Skip to main content

Advertisement

Log in

Review: Progress in permafrost hydrogeology in China

Revue: Avancées en hydrogéologie des pergélisols en Chine

Revisión: Progreso en la hidrogeología de permafrost en China

综述:中国永久冻土水文地质研究进展

Revisão: Progressos na hidrogeologia de pergelissolos na China

  • Paper
  • Published:
Hydrogeology Journal Aims and scope Submit manuscript

Abstract

Groundwater in China’s permafrost region is vital for humans and cold-climate ecosystems. Permafrost responses to global warming have significantly changed the spatio-temporal patterns and distribution of properties associated with the groundwater system. The main areas of current and past studies on permafrost hydrogeology in China include four aspects: groundwater distribution and dynamics in permafrost regions, interplay between groundwater and permafrost, the impact of permafrost degradation on groundwater, and the regional effect of groundwater changes on the environment in permafrost regions. Over the last 10 years, the development and use of coupled heat-transport and groundwater models have focused on the hydrogeology of permafrost, and on groundwater development and distribution in permafrost regions. Progress in groundwater-related research on issues surrounding permafrost regions of China are comprehensively summarized and discussed in this review paper, which should provide a theoretical basis for further study of the groundwater system and its effects on the ecological environment under climate change.

Résumé

Les eaux souterraines dans les régions de pergélisol en Chine sont vitales pour les humains et les écosystèmes de climat froid. Les réponses du pergélisol au réchauffement global ont significativement modifié les schémas spatio-temporels et la distribution des propriétés associées aux systèmes aquifères. Les principales régions où des études d’hydrogéologie du pergélisol sont ou ont été réalisées en Chine incluent quatre aspects: la distribution et la dynamique des eaux souterraines et dans les régions à pergélisols, l’interaction entre les eaux souterraines et le pergélisol, l’impact de la dégradation du pergélisol sur les eaux souterraines, et l’effet régional des changements hydrogéologiques sur l’environnement dans les régions de pergélisol. Dans les 10 dernières années, le développement et l’utilisation de modèles couplés de transport et chaleur se sont focalisés sur l’hydrogéologie du pergélisol et sur le développement et la distribution des régions de pergélisol. Les avancées scientifiques en matière de recherche sur les problématiques de l’hydrogéologie en région de pergélisol en Chine sont résumées de manière exhaustive et discutées dans cet article de revue, qui devrait fournir une base théorique pour les prochaines études sur les systèmes hydrogéologiques et leurs effets sur les environnements écologiques soumis aux changements climatiques.

Resumen

El agua subterránea en la región de permafrost de China es vital para los seres humanos y los ecosistemas de clima frío. Las respuestas del permafrost al calentamiento global han cambiado significativamente los patrones espacio-temporales y la distribución de las propiedades asociadas con el sistema de agua subterránea. Las principales áreas de estudios actuales y pasados ​​sobre hidrogeología de permafrost en China incluyen cuatro aspectos: distribución y dinámica del agua subterránea en las regiones de permafrost, interacción entre el agua subterránea y el permafrost, el impacto de la degradación del permafrost sobre las aguas subterráneas y el efecto regional de los cambios en las zonas de permafrost. En los últimos 10 años, el desarrollo y uso de modelos acoplados de transporte de calor y agua subterránea se han centrado en la hidrogeología del permafrost y en el desarrollo y distribución del agua subterránea en las regiones de permafrost. En este trabajo de revisión se resume y discute exhaustivamente el progreso en la investigación relacionada con el agua subterránea en temas relacionados con las regiones de permafrost de China, el cual debe proporcionar una base teórica para un estudio mayor del sistema de agua subterránea y de sus efectos sobre el medioambiente ecológico bajo el cambio climático.

摘要

中国永久冻土地区的地下水对于人类和严寒气候的生态系统至关重要。永结冻土对全球变暖的响应大大改变了与地下水相关的时空模式和特性分布。目前和过去研究中国永久冻土水文地质的主要领域包括4个方面:永久冻土地区地下水分布和动力学;地下水和永久多年国土的相互作用;永久冻土退化对地下水的影响以及地下水变化对永久冻土地区的区域影响。在过去10年里,耦合热传输模型和地下水模型的开发利用主要聚焦在永久冻土的水文地质以及永久冻土地区的地下水开发和分布上。本综述文章全面总结和分析了围绕中国永久冻土与地下水相关的问题研究进展,为进一步研究气候变化条件下地下水系统以及地下水系统对生态环境的影响提供了理论基础。

Resumo

As águas subterrâneas da região de pergelissolos da China são vitais para os seres humanos e os ecossistemas de clima frio. As respostas dos pergelissolos ao aquecimento global alteraram significativamente os padrões espaço-temporais e a distribuição das propriedades associadas ao sistema de águas subterrâneas. As principais áreas de estudos atuais e passados ​​sobre a hidrogeologia de pergelissolos na China incluem quatro aspectos: distribuição e dinâmica de águas subterrâneas em regiões de pergelissolos, interação entre águas subterrâneas e pergelissolos, o impacto da degradação dos pergelissolos nas águas subterrâneas e o efeito regional das mudanças nas águas subterrâneas no meio ambiente nas regiões de pergelissolos. Nos últimos 10 anos, o desenvolvimento e o uso de modelos de transporte de calor e águas subterrâneas acoplados concentraram-se na hidrogeologia doe pergelissolos e no desenvolvimento e distribuição de águas subterrâneas em regiões de pergelissolos. O progresso na pesquisa relacionada às águas subterrâneas sobre as questões que cercam as regiões de pergelissolos da China são amplamente resumidas e discutidas neste artigo de revisão, que deve fornecer uma base teórica para estudos adicionais do sistema de águas subterrâneas e seus efeitos sobre o ambiente ecológico sob as mudanças climáticas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • AMAP (2017) Snow, water, ice and permafrost in the Arctic (SWIPA) 2017. Arctic Monitoring and Assessment Programme, Oslo, Norway, 269 pp

  • Arctic-HYDRA consortium (2010) The arctic hydrological cycle monitoring, modelling and assessment programme science plan. Last accessed at http://arctichydra.arcticportal.org/images/stories/Arctic-HYDRA.pdf. Accessed 26 Nov 2012

  • Bense VF, Ferguson G, Kooi H (2009) Evolution of shallow groundwater flow systems in areas of degrading permafrost. Geophys Res Lett 36:L22401. https://doi.org/10.1029/2009GL039225

    Article  Google Scholar 

  • Carey SK, Boucher JL, Duarte CM (2013) Inferring groundwater contributions and pathways to streamflow during snowmelt over multiple years in a discontinuous permafrost subarctic environment (Yukon, Canada). Hydrogeol J 21(1):67–77

    Article  Google Scholar 

  • Chang J, Wang GX, Li CJ, Mao TX (2015a) Seasonal dynamics of suprapermafrost groundwater and its response to the freeing-thawing processes of soil in the permafrost region of Qinghai-Tibet Plateau. Sci China Ser D 58(5):1–12

    Article  Google Scholar 

  • Chang J, Wang GX, Mao TX (2015b) Simulation and prediction of suprapermafrost groundwater level variation in response to climate change using a neural network model variation in response to climate change using a neural network model. J Hydrol 529:1211–1220

    Article  Google Scholar 

  • Chang QX, Sun ZY, Ma R, Wang X, Long X (2016) A review of groundwater flow and its interaction with surface water in permafrost region. Adv Sci Technol Water Resour 36(5):87–94

    Google Scholar 

  • Chen RS, Lu SH, Kang ES, Ji XB, Yang Y, Zhang JS (2006) A distributed water heat coupled (DWHC) model for mountainous watershed of an inland river basin (I): model structure and equations. Adv Earth Science 21(08):806–818

    Google Scholar 

  • Cheng GD (1998) Glaciology and geocryology of China in the past 40 years: progress and prospect. J Glaciol Geocryol 20(3):213–226

    Google Scholar 

  • Cheng GD, Jin HJ (2013a) A groundwater in the permafrost regions on the Qinghai-Tibet Plateau and it changes. Hydrogeology & Engineering Geology 40(1):1–10

    Google Scholar 

  • Cheng GD, Jin HJ (2013b) Permafrost and groundwater on the Qinghai-Tibet Plateau and in Northeast China. Hydrogeol J 21(1):5–23

    Article  Google Scholar 

  • Cui W, Wu QB, Liu YZ (2010) The thermal effect of a thermokarst Lake on permafrost. J Glaciol Geocryol 32(4):755–760

    Google Scholar 

  • Cui W, Liu CK, Kang JL (2014) Development and evolution of permafrost impacted by thermokarst lake. Forestry Construction 1:58–62

    Google Scholar 

  • Ding YJ (1995) Nearly 40 years to global glacier fluctuations in response to climate change. Sci China Ser B 25(10):1093–1098

    Google Scholar 

  • Environmental and Ecological Science Data Center (2018) http://westdc.westgis.ac.cn. Accessed May 2018

  • Fan RH, Yao SS (1982) Disussion on the formation and the trend of development of the perennial frost on southern Qinghai-northern Xizang (Tibet) Plateau. J Glaciol Geocryol 4(1):45–64

    Google Scholar 

  • Feng YQ, Liang SH, Wu QB, Chen JW, Tian X, Wu P (2016) Vegetation responses to permafrost degradation in the Qinghai-Tibetan Plateau. Journal of Beijing Normal University (Natural Science) 52(3):311–316

    Google Scholar 

  • Flerchinger GN, Saxton KE (1989) Simultaneous heat and water model of a freezing snow-residue-soil system: I. theory and development. Trans ASAE 32(2):565–571

    Article  Google Scholar 

  • Frey KE, McClelland JW (2009) Impacts of permafrost degradation on arctic river biogeochemistry. Hydrol Process 23:169–182

    Article  Google Scholar 

  • Gao ZY, Niu FJ, Wang YB, Luo J, Lin ZJ (2017) Impact of a thermokarst lake on the soil hydrological properties in permafrost regions of the Qinghai-Tibet Plateau, China. Sci Total Environ 574:751–759

    Article  Google Scholar 

  • Ge S, McKenzie J, Voss C, Wu QB (2011) Exchange of groundwater and surface-water mediated by permafrost response to seasonal and long term air temperature variation. Geophys Res Lett 38(14):L14402

    Article  Google Scholar 

  • Gong TL, Liu CM, Liu JS (2006) Hydrological response of Lhasa River to climate change and permafrost degradation in Xizang. Acta Geograph Sin 61(5):519–526

    Google Scholar 

  • Haldorsen S, Heim M, Dale B, Landvik JY, MVD P, Leijnse A, Salvigsen O, Hagen JO, Banks D (2010) Sensitivity to long-term climate change of subpermafrost groundwater systems in Svalbard. Quat Res 73(2):393–402

    Article  Google Scholar 

  • He RX, Jin HJ, Lu LZ, Yu SP, Chang XL, Yang SZ, Wang SL, Sun GY (2009) Recent changes of permafrost and cold regions environments in the northern part of northeastern China. J Glaciol Geocryol 31(3):525–531

    Google Scholar 

  • Immerzeel WW, van Beek LPH, Bierkens MFP (2010) Climate change will affect the Asian water towers. Science 328:1382. https://doi.org/10.1126/science.1183188

    Article  Google Scholar 

  • IPCC (2013) The IPCC fifth assessment report (AR5), Climate Change 2013: the physical science basis. IPCC, Stockholm

  • Jansson PE, Moon DS (2001) A coupled model of water, heat and mass transfer using object orientation to improve flexibility and functionality. Environ Model Softw 16(1):37–46

    Article  Google Scholar 

  • Jin HJ, He RX, Cheng GD, Wu QB, Wang SL, Lü LZ, Chang X (2009) Changes in frozen ground in the source area of the Yellow River on the Qinghai-Tibetan Plateau, China, and their eco-environmental impacts. Environ Res Lett 4:1–11

    Article  Google Scholar 

  • Jin HJ, Luo DL, Wang SL, Lü LZ, Wu JC (2011) Spatiotemporal variability of permafrost degradation on the Qinghai-Tibet Plateau. Sciences in Cold and Arid Regions 3(4):281–305

    Google Scholar 

  • Kurylyk BL, MacQuarrie KTB, McKenzie JM (2014) Climate change impacts on groundwater and soil temperatures in cold and temperate regions: implications, mathematical theory, and emerging simulation tools. Earth Sci Rev 138:313–334

    Article  Google Scholar 

  • Li SX, Cheng GD, Guo DX (1996) The future thermal regime of numerical simulating permafrost on Qinghai-Xizang (Tribet) plateau, China, under climate warming. Sci China Ser D Earth Sci 39(4):434–441

  • Li YK, Liao JJ, Guo HD, Liu ZW, Shen GZ (2014) Patterns and potential drivers of dramatic changes in Tibetan Lakes, 1972–2010. PLoS One 9(11):e111890. https://doi.org/10.1371/journal.pone.0111890

    Article  Google Scholar 

  • Li YZ, Guo YW, Geng X, Wang XM, Li ST (2013) Distribution characteristics of groundwater in non-freezing spring area on Tibetan Plateau. Water Resour Prot 29(3):10–14

    Google Scholar 

  • Li ZP (2013) Characteristic analysis of groundwater in Qinghai Tanggulashan area. China University of Geosciences, Beijing

    Google Scholar 

  • Li ZX, Qi F, Liu W, Wang TT, Chang AF, Gao Y, Guo XY, Pan YH, Li JG, Guo R, Jia B (2014) Study on the contribution of cryosphere to runoff in the cold alpine basin: a case study of Hulugou River basin in the Qilian Mountains. Glob Planet Chang 122:345–361

    Article  Google Scholar 

  • Li ZX, Qi F, Wang QJ, Yong S, Li JG, Li YG, Wang YM (2016a) Quantitative evaluation on the influence from cryosphere meltwater on runoff in an inland river basin of China. Glob Planet Chang 143:189–195

    Article  Google Scholar 

  • Li ZX, Qi F, Wang QJ, Song Y, Cheng AF, Li JG (2016b) Contribution from frozen soil meltwater to runoff in an in-land river basin under water scarcity by isotopic tracing in northwestern China. Glob Planet Chang 136:41–51

    Article  Google Scholar 

  • Liang SH, Wang L, Li ZM, Cao WB (2007) The effect of permafrost on alpine vegetation in the source regions of the Yellow River. J Glaciol Geocryol 29(1):45–52

    Google Scholar 

  • Liao HC, Zhang B, Xiao DF (2008) Frozen earth hydrology characteristic in the cold area and influence to groundwater supply from frozen earth. Journal of Heilongjiang Hydraulic Engineering 35(3):123–126

    Google Scholar 

  • Lin ZJ, Niu FJ, Luo J, Lu JH, Liu H (2011) Changes in permafrost environments caused by the Qinghai-Tibet highway construction and maintenance. Central South University of Technology Journal 18:1454–1464

    Article  Google Scholar 

  • Lin ZJ, Luo J, Niu FJ (2016) Development of a thermokarst lake and its thermal effects on permafrost over nearly 10 yr in the Beiluhe Basin, Qinghai-Tibet Plateau. Geosphere 12(2):632–643

    Article  Google Scholar 

  • Lin ZJ, Niu FJ, Fang JH, Luo J, Yin GA (2017) Interannual variations in the hydrothermal regime around a thermokarst lake in Beiluhe, Qinghai-Tibet Plateau. Geomorphology 276:16–26

    Article  Google Scholar 

  • Liu GS (2012) Study on balance process of energy and water in permafrost regions of Yangtze River. PhD dissertation, Chinese Academy of Sciences, Beijing

  • Liu J, Hayakawab N, Lub M, Dong SH, Yuan JY (2003) Hydrological and geocryological response of winter streamflow to climate warming in Northeast China. Cold Reg Sci Technol 37(1):15–24

    Article  Google Scholar 

  • Liu JS, Wei WS, Huang YY, Shang SC (2006) Hydrological response of winter streamflow to climate change and permafrost degradation in Manas watershed, Tianshan Mountains. J Glaciol Geocryol 28(5):656–662

    Google Scholar 

  • Liu HJ, Liu DX, Yu QH, Fan CB, Liu ZW (2009) Study on permafrost engineering problems and engineering countermeasure of transmission line. Geotech Invest Survey 4:32–36

    Google Scholar 

  • Liu Y, Zhao L, Li R (2013) Simulation of the soil water thermal features within the active layer in Tanggula Region, Tibetan Plateau, by using SHAW model. J Glaciol Geocryol 35(2):280–290

  • Luo DL, Jin HJ, Lin L, He RX, Yang SZ, Chang XL (2012) Degradation of permafrost and cold-environments on the interior and eastern Qinghai Plateau. J Glaciol Geocryol 34(3):538–546

    Google Scholar 

  • Luo J, Niu FJ, Lin ZJ, Liu MH, Yin GA (2015) Thermokarst lake changes between 1969 and 2010 in the Beilu River basin, Qinghai–Tibet Plateau, China. Sci Bull 60(5):556–564

    Article  Google Scholar 

  • Ma LJ (2008) Temporal and spatial variation of snow cover over Qinghai-Tibet plateau in recent 50 years and its relationship with atmospheric circulation factor. Nanjing University of Information Science & Technology, Nanjing, China

  • Mao TX (2016) Environmental hydrochemistry study in a permafrost catchment based on hydrological processes. PhD dissertation, University of Chinese Academy of Sciences, Beijing

  • McKenzie JM, Voss CI (2013) Permafrost thaw in a nested groundwater-flow system. Hydrogeol J 21(1):299–316

    Article  Google Scholar 

  • Niu FJ, Lin ZJ, Liu H, Lu JH (2011a) Characteristics of thermokarst lakes and their influence on permafrost in Qinghai–Tibet Plateau. Geomorphology 132:222–233

    Article  Google Scholar 

  • Niu L, Ye BS, Li J, Sheng Y (2011b) Effect of permafrost degradation on hydrological processes in typical basins with various permafrost coverage in western China. Sci China Ser D 41(1):85–92

    Google Scholar 

  • Pan X, You Y, Roth K, Guo L, Wang XB, Yu QH (2014) Mapping permafrost features that influence the hydrological processes of a Thermokarst Lake on the Qinghai-Tibet Plateau, China. Permafrost Periglac 25(1):60–68

    Article  Google Scholar 

  • Peng XM, Wu QB, Tian MZ (2003) The effect of groundwater table lowering on ecological environment in the headwaters of the Yellow River. J Glaciol Geocryol 25(6):667–671

    Google Scholar 

  • Petrone KC, Jones JB, Hinzman LD, Boone RD (2006) Seasonal export of carbon, nitrogen, and major solutes from Alaskan catchments with discontinuous permafrost. J Geophys Res Biogeosci 111(G2):G02020

    Article  Google Scholar 

  • Prowse TD, Brown K (2010) Hydro-ecological effects of changing Arctic river and lake ice covers: a review. Hydrol Res 41(6):454

    Article  Google Scholar 

  • Qin J, Ding Y, Han T, Liu Y (2017) Identification of the Factors Influencing the Baseflow in the Permafrost Region of the Northeastern Qinghai-Tibet Plateau. Water 9(9):666

    Article  Google Scholar 

  • Qu B, Sillanpää M, Li CL, Kang SC, Stubbins A, Yan FP, Aho KS, Zhou F, Raymond PA (2017) Aged dissolved organic carbon exported from rivers of the Tibetan Plateau. PLoS One 12(5):e0178166

    Article  Google Scholar 

  • Quinton WL, Marsh P (1999) A conceptual framework for runoff generation in a permafrost environment. Hydrol Process 13(16):2563–2581

    Article  Google Scholar 

  • Ran YH, Li X, Cheng GD, Zhang TJ, Wu QB, Jin HJ, Jin R (2012) Distribution of permafrost in China: an overview of existing permafrost maps. Permafrost Periglac 23(4):322–333

    Article  Google Scholar 

  • Ran YH, Li X, Cheng GD (2018) Climate warming over the past half century has led to thermal degradation of permafrost on the Qinghai–Tibet Plateau. Cryosphere 12(2):595–608

    Article  Google Scholar 

  • Scheidegger JM, Bense VF (2014) Impacts of glacially recharged groundwater flow systems on talik evolution. J Geophys Res Earth 119(4):758–778

    Article  Google Scholar 

  • Smith LC, Pavelsky TM, MacDonald GM, Shiklomanov AI, Lammers RB (2007) Rising minimum daily flows in northern Eurasian rivers: a growing influence of groundwater in the high-latitude hydrologic cycle. J Geophys Res 112:G04S47. https://doi.org/10.1029/2006JG000327

    Article  Google Scholar 

  • Striegl RG, Aiken GR, Dornblaser MM, Raymond PA, Wickland KP (2005) A decrease in discharge-normalized DOC export by the Yukon River during summer through autumn. Geophys Res Lett 32(21):L21413

    Article  Google Scholar 

  • Sugimoto A, Naito D, Yanagisawa N, Ichiyanagi K, Kurita N, Kubota J, Kotake T, Ohata T, Maximov TC, Fedorov AN (2003) Characteristics of soil moisture in permafrost observed in east Siberian taiga with stable isotopes of water. Hydrol Process 17(6):1073–1092

    Article  Google Scholar 

  • Tan L (2016) Qinghai-Tibet project corridor Wudaoliang-84 road course hydrochemical characteristics of water. Shanxi Architecture 42(2):52–53

    Google Scholar 

  • Tan LW, Li FX, Li ZP, Zhao J, Wang H (2016) Study on groundwater characteristics and development in permafrost region of Tuotuo River. Yellow River 38(5):62–67

    Google Scholar 

  • Viktor VS, Dai CL, Zhang YD (2016a) Northern Eurasian groundwater in the upper frozen layer distribution rules. Heilongjiang Water Resources 2(3):19–26

    Google Scholar 

  • Viktor VS, Dai CL, Yu CG (2016b) Researchin the relationship between freezing rock layers and groundwater in cold regions. Heilongjiang Water Resources 2(1):10–18

  • Wang DS, Wang XQ, Mu YY (2000) Dynamic analysis of frozen layer water in seasonal frozen soil. Heilongjiang Science and Technology of Water Conservancy 28(2):29–29

    Google Scholar 

  • Wang G, Liu L, Liu G, Hu H, Li T (2010) Impacts of grassland vegetation cover on the active-layer thermal regime, Northeast Qinghai-Tibet Plateau, China. Permafrost Periglac 21(4):335–344

    Article  Google Scholar 

  • Wang GX, Li YS, Wu QB, Wang YB (2006) Relationship between permafrost and vegetation in frozen soil region of Qinghai-Tibet Plateau and its impact on alpine ecosystems. Sci China Ser D 36(8):743–754

    Google Scholar 

  • Wang GX, Hu HC, Li TB (2009) The influence of freeze–thaw cycles of active soil layer on surface runoff in a permafrost watershed. J Hydrol 375:438–449

    Article  Google Scholar 

  • Wang GX, Mao TX, Chang J, Song CL, Huang KW (2017a) Processes of runoff generation operating during the spring and autumn seasons in a permafrost catchment on semi-arid plateaus. J Hydrol 550:307–317

    Article  Google Scholar 

  • Wang SL (1990) On intrapermafrost water. Hydrogeol Eng Geol 17(1):46–47

    Google Scholar 

  • Wang SL, Bian CY, Wang J (1994) Hydrogeological characteristics of permafrost area of Qing-Zang Plateau. Qinghai Geol 3(1):40–47

    Google Scholar 

  • Wang ST, Sheng Y, Cao W, Li J, Ma S, Hu XY (2017b) Estimation of permafrost ice reserves in the source area of the Yellow River using landform classification. Adv Water Sci 28(6):801–810

    Google Scholar 

  • Wellman TP, Voss CI, Walvoord MA (2013) Impacts of climate, lake size, and supra-and sub-permafrost groundwater flow on lake-talik evolution, Yukon flats, Alaska (USA). Hydrogeol J 21(1):281–298

    Article  Google Scholar 

  • Woo MK (2012) Permafrost hydrology. Springer Science & Business Media, Heidelberg, Germany

  • Wright N, Hayashi M, Quinton WL (2009) Spatial and temporal variations in active layer thawing and their implication on runoff generation in peat-covered permafrost terrain. Water Resour Res 45:W05414

    Article  Google Scholar 

  • Wu JK, Ding YJ, Wang GX, Shen YP (2004) Advance on application of isotopic techniques in water sciences in cold and arid regions. J Glaciol Geocryol 26(4):509–516

    Google Scholar 

  • Wu QB, Zhang TJ, Liu YZ (2010) Permafrost temperatures and thickness on the Qinghai-Tibet Plateau. Glob Planet Chang 72:32e38

    Article  Google Scholar 

  • Wu XD, Zhao L, Fang HB, Zhao YG, Smoak JM, Pang QQ, Ding YJ (2016) Environmental controls on soil organic carbon and nitrogen stocks in the high-altitude arid western Qinghai-Tibetan Plateau permafrost region. J Geophys Res-Biogeo 121(1):176–187

    Article  Google Scholar 

  • Xiang LW, Wang HS, Steffen H, Wu P, Jia LL, Jiang LM, Shen Q (2016) Groundwater storage changes in the Tibetan Plateau and adjacent areas revealed from GRACE satellite gravity data. Earth Planet Sci Lett 449:228–239

    Article  Google Scholar 

  • Xu DW, Shan W, Sun H, Zhang XD (2014) Changes of base flow in the source region of Yellow River and the response of its vegetation. Ground Water 36(5):109–111

    Google Scholar 

  • Xu XM, Zhang ZQ, Wu QB (2017) Simulation of permafrost changes on the Qinghai–Tibet Plateau, China, over the past three decades. Int J Digit Earth 10(5):522–538

    Article  Google Scholar 

  • Yang Y, Chen RS (2011) Research review on hydrology in the permafrost and seasonal frozen regions. Adv Earth Sci 26(7):711–723

    Google Scholar 

  • Yang ZN (2000) Hydrology of China's cold region. Science Press, Beijing

  • Yang Y, Chen RS, Ji XB, Qing WW, Liu JF, Han CT (2010) Heat and water transfer processes on alpine meadow frozen grounds of Heihe mountainous in Northwest China. Adv Water Sci 21(1):30–34

    Google Scholar 

  • Yao TD, Qin DH, Shen YP, Zhao L, Wang NL, Lu AX (2013) Cryospheric changes and their impacts on regional water cycle and ecological conditions in the Qinghai-Tibetan Plateau. Chin J Nat 35(3):179–186

    Google Scholar 

  • Yoshikawa K, Hinzman LD (2003) Shrinking thermokarst ponds and groundwater dynamics in discontinuous permafrost near council, Alaska. Permafrost Periglac 14(2):151–160

    Article  Google Scholar 

  • You YH, Yu QH, Pan XC, Wang XB, Guo L (2017) Geophysical imaging of permafrost and talik configuration beneath a thermokarst lake. Permafrost Periglac 28(2):470–476

    Article  Google Scholar 

  • Yu SS, Pan WD, Shi CH, Wang XJ, Liang B (2005) Investigation and mechanism analysis of the major secondary harmful frozen-soil phenomena along Qinghai-Tibet railway. J Rock Mech Eng 24(6):1082–1085

    Google Scholar 

  • Yuan BX, Chen WW, Xie J, Liang SY, Li JC (2002) Bad geological phenomena in permafrost regions of the Qinghai-Tibet Plateau and its impact on railway route selection. Journal of Lanzhou University (Natural Sciences) 38(1):127–131

    Google Scholar 

  • Yue GY, Zhao L, Zhao YH, Du EJ, Wang Q, Wang ZW, Qiao YP (2013) Relationship between soil properties in permafrost active layer and surface vegetation in Xidatan on the Qinghai-Tibetan Plateau. J Glaciol Geocryol 35(3):565–573

    Google Scholar 

  • Zang HJ, Zhou Z (2009) Regional snow depth increment time series with its variation in the Qinghai-Tibet Plateau. Meteorol Monthly 35(6): 77–81

    Google Scholar 

  • Zhang GQ, Yao TD, Shum CK, Yi S, Yang K, Xie HJ, Feng W, Bolch T, Wang L, Behrangi A, Zhang HB, Wang WC, Xiang Y, Yu JY (2017) Lake volume and groundwater storage variations in Tibetan Plateau’s endorheic basin. Geophys Res Lett 44(11):5550–5560

    Article  Google Scholar 

  • Zhang JY, He RM, Qi J, Liu CS, Wang GQ, Jin JL (2013) A new perspective on water issues in North China. Adv Water Sci 24(3):303–310

    Google Scholar 

  • Zhang JY, Wang GQ, Yang Y, He RM, Liu JF (2008) The possible impacts of climate change on water security in China. Adv Clim Chang Res 4(5):290–295

    Google Scholar 

  • Zhang ML, Wen Z, Xue K (2015) Soil moisture-heat migration characteristics within the permafrost active layer in Beiluhe. Journal of Arid Land Resources and Environment 29(9):176–181

    Google Scholar 

  • Zhang SQ, Wang YG, Zhao YZ, Huang Y, Li YG, Shi WD, Shang XG (2004) Permafrost degradation and its environmental sequent in the source regions of the Yellow River. J Glaciol Geocryol 26(1):1–6

    Google Scholar 

  • Zhang SQ, Cao FY, Li XF, Li ST, Diao YJ, Li YZ, Li L (2011) Study on mechanism of water controlled by structures in Budong spring region along Qinghai-Tibet highway. J Jilin Univ (Earth Sci Ed) 41(S1):253–258

    Google Scholar 

  • Zhou J, Wang GX, Li X, Yang YM, Pan XD (2008) Energy-water balance of meadow ecosystem in cold frozen soil areas. J Glaciol Geocryol 30(3):398–407

    Google Scholar 

  • Zhou J, Pomeroy JW, Zhang W, Cheng GD, Wang GX, Chen C (2014) Simulating cold regions hydrological processes using a modular model in the west of China. J Hydrol 509(4):13–24

    Article  Google Scholar 

  • Zhao L, Wu Q, Marchenko S, Sharkhuu N (2010) Thermal state of permafrost and active layer in Central Asia during the international polar year. Permafr Periglac Process 21(2):198–207

    Article  Google Scholar 

  • Zhou YC (1980) Discussion on the study methods of water dynamics in seasonal freezing area. J Glaciol Geocryol 2(01):46–53

    Google Scholar 

  • Zhou YW, Guo DX (1982) Principal characteristics of permafrost in China. J Glaciol Geocryol 4(1):1–19

    Google Scholar 

  • Zhou YW, Qiu GQ, Guo DX, Cheng GD, Li SD (2000) China Frozen Soil. Science Press, Beijing

    Google Scholar 

  • Zhuang YC, Zhang SQ (2001) Remote sensing analysis on the variation of land cover/utilization in the source of Yellow River in twenty years. Qinghai Geol 10(B12):62–67

    Google Scholar 

Download references

Funding Information

This study was funded by the Natural Science Foundation of China (No. 41671015, No. 91547203), the Fundamental Research Funds for the Central Universities (Grant No. LZUJBKY-2016-171) and the National Basic Research Program of China (973, No. 2013CBA01807).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Juan Chang or Genxu Wang.

Additional information

Published in the special issue “Groundwater sustainability in fast-developing China”

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chang, J., Ye, R. & Wang, G. Review: Progress in permafrost hydrogeology in China. Hydrogeol J 26, 1387–1399 (2018). https://doi.org/10.1007/s10040-018-1802-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10040-018-1802-6

Keywords

Navigation