Skip to main content

Advertisement

Log in

Response of the groundwater system in the Guanzhong Basin (central China) to climate change and human activities

Réponse du système aquifère du bassin du Guanzhong (chine Centrale) au changement climatique et aux activités humaines

Respuesta del sistema de agua subterránea al cambio climático y a las actividades humanas En la Cuenca de Guanzhong (China central)

(中国中部)关中盆地地下水系统对气候和人类活动的响应

Resposta do sistema de águas subterrâneas na Bacia do Guanzhong (China central) às mudanças climáticas e às atividades humanas

  • Paper
  • Published:
Hydrogeology Journal Aims and scope Submit manuscript

Abstract

The Guanzhong Basin in central China features a booming economy and has suffered severe drought, resulting in serious groundwater depletion in the last 30 years. As a major water resource, groundwater plays a significant role in water supply. The combined impact of climate change and intensive human activities has caused a substantial decline in groundwater recharge and groundwater levels, as well as degradation of groundwater quality and associated changes in the ecosystems. Based on observational data, an integrated approach was used to assess the impact of climate change and human activities on the groundwater system and the base flow of the river basin. Methods included: river runoff records and a multivariate statistical analysis of data including historical groundwater levels and climate; hydro-chemical investigation and trend analysis of the historical hydro-chemical data; wavelet analysis of climate data; and the base flow index. The analyses indicate a clear warming trend and a decreasing trend in rainfall since the 1960s, in addition to increased human activities since the 1970s. The reduction of groundwater recharge in the past 30 years has led to a continuous depletion of groundwater levels, complex changes of the hydro-chemical environment, localized salinization, and a strong decline of the base flow to the river. It is expected that the results will contribute to a more comprehensive management plan for groundwater and the related eco-environment in the face of growing pressures from intensive human activities superimposed on climate change in this region.

Résumé

Le bassin du Guanzhong en Chine centrale est. caractérisé par un développement économique important et a souffert de sécheresses sévères, entraînant une forte baisse du niveau des eaux souterraines au cours des 30 dernières années. Constituant une ressource en eau majeure, les eaux souterraines jouent un rôle significatif pour l’alimentation en eau potable. L’impact conjugué du changement climatique et des activités humaines intensives est. à l’origine d’une baisse significative de la recharge de l’aquifère et des niveaux piézométriques, ainsi que d’une dégradation de la qualité des eaux souterraines et des modifications engendrées sur les écosystèmes. A partir des données d’observation, une approche intégrée a été utilisée pour évaluer l’impact du changement climatique et des activités humaines sur le système aquifère et le débit de base de la rivière du bassin versant. Les méthodes comprennent: le suivi du débit de la rivière et une analyze statistique à plusieurs variables des données telles que les niveaux piézométriques historiques et les données climatiques; des études hydrochimiques et une analyze de tendance des données hydrochimiques historiques; une analyze par ondelettes des données climatiques; et l’indice du débit de base. Les analyses indiquent une tendance nette de réchauffement et une tendance à la baisse des précipitations depuis les années 1960, en plus d’une augmentation des activités humaines depuis les années 1970. La diminution de la recharge de l’aquifère au cours des 30 dernières années a conduit à une baisse continue des niveaux piézométriques, à des changements complexes de l’environnement hydrochimique, à des phénomènes de salinization localisés, et à une forte réduction du débit de base de la rivière. Il est. attendu que les résultats contribueront à l’élaboration et mise en œuvre d’ un programme de gestion complet pour les eaux souterraines et pour l’environnement écologique associé, face aux pressions grandissantes des activités humaines intenses qui se surimposent au changement climatique dans cette région.

Resumen

La cuenca de Guanzhong, en el centro de China, presenta una economía en auge y ha sufrido una grave sequía, que provocó un grave agotamiento del agua subterránea en los últimos 30 años. Como el principal recurso hídrico, el agua subterránea juega un papel significativo en el suministro de agua. El impacto combinado del cambio climático y las actividades humanas intensivas ha causado una disminución sustancial en la recarga del agua subterránea y en los niveles de agua subterránea, así como en la degradación de la calidad del agua subterránea y en los cambios asociados en los ecosistemas. En base a los datos de observación, se utilizó un enfoque integrado para evaluar el impacto del cambio climático y las actividades humanas en el sistema de agua subterránea y en el flujo base de la cuenca. Los métodos incluyeron: registros de la escorrentía de los ríos y un análisis estadístico multivariante de datos que incluyen niveles históricos de agua subterránea y clima; investigación hidroquímica y análisis de tendencias de los datos hidroquímicos históricos; análisis de ondículas de datos climáticos; y el índice del flujo base. Los análisis indican una clara tendencia de calentamiento y una tendencia decreciente en las precipitaciones desde la década de 1960, además del aumento de las actividades humanas desde la década de 1970. La reducción de la recarga del agua subterránea en los últimos 30 años ha llevado a un agotamiento continuo de los niveles de agua subterránea, cambios complejos del ambiente hidroquímico, salinización localizada y una fuerte disminución del flujo base hacia el río. Se espera que los resultados contribuyan a un plan de gestión más integral para el agua subterránea y el eco-ambiente relacionado frente a las presiones crecientes de las actividades humanas intensivas superpuestas al cambio climático en esta región.

摘要

过去30年,中国中部的关中盆地经济蓬勃发展,遭受了严重的干旱,导致地下水枯竭。作为重要的水资源,地下水在供水中发挥着重要的作用。气候变化和强烈的人类活动综合影响致使地下水补给量和地下水位大幅下降,以及地下水水质退化和生态系统的相关变化。根据观测数据,采用综合方法评价了气候变化和人类活动对地下水系统和河流流域基流的影响。方法包括:河径流量记录及包括历史地下水水位和气候等数据的多变量统计分析;水化学调查和历史水化学数据分析;气候数据的小波分析;基流通量。分析结果显示出,自从二十世纪60年代以来,气候有变暖的趋势,降雨量有下降的趋势,并且自从二十世纪70年代人类活动有增加的趋势。过去30年来地下水补给里量的减少导致地下水位持续下降、水化学环境的复杂变化、局部盐碱化以及注入河流的基流量严重下降。预计,在面对本地区气候变化叠加强烈的人类活动压力增加的情况下,研究结果有助于地下水更加全面的管理规划。

Resumo

A Bacia de Guanzhong, na China central, que apresenta uma economia crescente e tem sofrido uma seca severa, resultando em grave depleção das águas subterrâneas nos últimos 30 anos. Como um importante recurso hídrico, as águas subterrâneas desempenham um papel significativo no abastecimento de água. O impacto combinado das mudanças climáticas e das atividades humanas intensivas causou um declínio substancial na recarga das águas subterrâneas e nos níveis das águas subterrâneas, bem como na degradação da qualidade das águas subterrâneas e nas mudanças associadas nos ecossistemas. Baseado em métodos observacionais, uma abordagem integrada foi usada para avaliar o impacto das mudanças climáticas e das atividades antrópicas no sistema de águas subterrâneas e fluxo de base dos rios da bacia. Métodos incluídos: registros de escoamento do rio e uma análise estatística multivariada de dados, incluindo níveis históricos das águas subterrâneas e clima; investigação hidroquímica e análise de tendências dos dados hidroquímicos históricos; análise de onduleta de dados climáticos; e o índice de fluxo base. As análises indicam uma clara tendência de aquecimento e uma tendência decrescente das chuvas desde a década de 1960, além do aumento das atividades humanas desde a década de 1970. A redução da recarga das águas subterrâneas nos últimos 30 anos levou a um esgotamento contínuo dos níveis de águas subterrâneas, mudanças complexas do ambiente hidroquímico, salinização localizada e um forte declínio do fluxo de base para o rio. Espera-se que os resultados contribuam para um plano de gestão mais abrangente para as águas subterrâneas e o ecoambiente relacionado, diante de pressões crescentes de atividades humanas intensivas sobrepostas às mudanças climáticas nesta região.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Aizebeokhai A (2011) Potential impacts of climate change and variability on groundwater resources in Nigeria. Afri J Environ Sci Technol 5(13):760–768

    Google Scholar 

  • Alley WM, Healy RW, Labaugh JW, Reilly TE (2002) Flow and storage in groundwater systems. Science 296(5575):1985. https://doi.org/10.1126/science.1067123

    Article  Google Scholar 

  • Brekke LD, Kiang JE, Olsen JR, Pulwarty RS, Raff DA, Turnipseed DP, Webb RS, White KD (2009) Climate change and water resources management: a federal perspective. US Geol Surv Circ 1331, 65 pp. Available at http://pubs.usgs.gov/circ/1331/. Accessed March 2018

  • Brikowski TH (2008) Doomed reservoirs in Kansas, USA? Climate change and groundwater mining on the Great Plains lead to unsustainable surface water storage. J Hydrol 354(1):90–101. https://doi.org/10.1016/j.jhydrol.2008.02.020

    Article  Google Scholar 

  • Chui CK (1992) An introduction to wavelets. Academic, San Diego, CA

    Google Scholar 

  • Essink OG, Van Baaren ES, De Louw PG (2010) Effects of climate change on coastal groundwater systems: a modeling study in the Netherlands. Water Resour Res 46(10). https://doi.org/10.1029/2009WR008719

  • Famiglietti JS (2014) The global groundwater crisis. Nat Clim Chang 4(11):945–948. https://doi.org/10.1038/nclimate2425

    Article  Google Scholar 

  • Gao P, Geissen V, Ritsema CJ, Mu XM, Wang F (2013) Impact of climate change and anthropogenic activities on stream flow and sediment discharge in the Wei River basin, China. Hydrol. Earth Syst Sci 9(3):961–972. https://doi.org/10.5194/hess-17-961-2013

    Article  Google Scholar 

  • Gleeson T, Befus KM, Jasechko S, Luijendijk E, Cardenas MB (2016) The global volume and distribution of modern groundwater. Nat Geosci 9(2):161–167. https://doi.org/10.1038/ngeo2590

  • Graaf IEMD, Beek RLPHV, Gleeson TN, Schmitz O, Sutanudjaja EH, Bierkens MFP (2017) A global-scale two-layer transient groundwater model: development and application to groundwater depletion. Adv Water Resour 102:53–67. https://doi.org/10.1016/j.advwatres.2017.01.011

    Article  Google Scholar 

  • Green TR, Bates BC, Charles SP, Fleming PM (2007a) Physically based simulation of potential effects of carbon dioxide altered climates on groundwater recharge. Vadose Zone J 6:597–609. https://doi.org/10.2136/vzj2006.0099

    Article  Google Scholar 

  • Green TR, Taniguchi M, Kooi H (2007b) Potential impacts of climate change and human activity on subsurface water resources. Vadose Zone J 6(3):531–532. https://doi.org/10.2136/vzj2007.0098

    Article  Google Scholar 

  • Guo XG, Pang JL, Shi XM, Chen TG (2010) Variation of climate productivity and its impact on plants in Guanzhong Plain for last 50 years (in Chinese). Syst Sci Comprehensive Study Agric 26(4):395–400

    Google Scholar 

  • Herczeg AL, Leaney FW (2011) Review: environmental tracers in arid-zone hydrology. Hydrogeol J 19(1):17–29. https://doi.org/10.1007/s10040-010-0652-7

    Article  Google Scholar 

  • Holman IP, Allen DM, Cuthbert MO, Goderniaux P (2012) Towards best practice for assessing the impacts of climate change on groundwater. Hydrogeol J 20(1):1–4. https://doi.org/10.1007/s10040-011-0805-3

    Article  Google Scholar 

  • Kinzelbach W, Bauer P, Siegfried T, Brunner P (2003) Sustainable groundwater management: problems and scientific tools. Episodes 26:279–284

    Google Scholar 

  • Li Z, Zheng FL, Liu WZ (2012) Spatiotemporal characteristics of reference evapotranspiration during 1961–2009 and its projected changes during 2011–2099 on the Loess Plateau of China. Agric For Meteorol 154–155(6):147–155. https://doi.org/10.1016/j.agrformet.2011.10.019

    Article  Google Scholar 

  • Meehl GA, Stocker TF, Collins WD, Friedlingstein P, Gaye AT, Gregory JM, Kitoh A, Knutti R, Murphy JM, Noda A, Raper SCB, Watterson IG, Weaver AJ, Zhao Z-C (2007) Global climate projections. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Climate Change 2007: the physical science basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge

    Google Scholar 

  • Meixner T, Manning AH, Stonestrom DA, Allen DM, Ajami H, Blasch KW, Brookfield AE, Castro CL, Clark JF, Gochis DJ, Flint AL, Neff KL, Niraula R, Rodell M, Scanlon BR, Singha K, Walvoord MA (2016) Implications of projected climate change for groundwater recharge in the western United States. J Hydrol 534:124–138. https://doi.org/10.1016/j.jhydrol.2015.12.027

    Article  Google Scholar 

  • Moeck C, Brunner P, Hunkeler D (2016) The influence of model structure on groundwater recharge rates in climate-change impact studies. Hydrogeol J 24(5):1–14

    Article  Google Scholar 

  • Piao S, Ciais P, Huang Y, Shen Z, Peng S, Li J, Zhou L, Liu H, Ma Y, Ding Y, Pierre F, Liu C, Tan K, Yu Y, Zhang T, Fang J (2010) The impacts of climate change on water resources and agriculture in China. Nature 467(7311):43–51. https://doi.org/10.1038/nature09364

    Article  Google Scholar 

  • Peng H, Jia Y, Tague C, Slaughter P (2015) An eco-hydrological model-based assessment of the impacts of soil and water conservation management in the Jinghe River Basin, China. Water 7(11):6301–6320. https://doi.org/10.3390/w7116301

    Article  Google Scholar 

  • Reilly TE, Dennehy KF, Alley WM, Cunningham WL (2008) Ground-water availability in the United States. US Geol Surv Circ 1323, 70 pp. https://pubs.usgs.gov/circ/1323/

  • Scanlon BR, Jolly I, Sophocleous M, Zhang L (2007) Global impacts of conversions from natural to agricultural ecosystems on water resources: quantity versus quality. Water Resour Res 63(3):215–222. https://doi.org/10.1029/2006WR005486

    Google Scholar 

  • Schaller MF, Fan Y (2009) River basins as groundwater exporters and importers: implications for water cycle and climate modeling. J Geophys Res Atmos 114(D4):83–84. https://doi.org/10.1029/2008JD010636

    Article  Google Scholar 

  • Smerdon BD (2017) A synopsis of climate change effects on groundwater recharge. J Hydrol. https://doi.org/10.1016/j.jhydrol.2017.09.047

  • Sun JZ, Wang LM, Men YM, Dong ZJ, Yi X, Wang Q, Zhao XF, Li ZY (2013) Loessology [Loess Geotechnology], vol 2. Xi’an Cartographic Publishing House, Xi’an, China

  • Steward DR, Bruss PJ, Yang X, Staggenborg SA, Welch SM, Apley MD (2013) Tapping unsustainable groundwater stores for agricultural production in the High Plains Aquifer of Kansas, projections to 2110. Proc Natl Acad Sci USA 110(37):3477–3486. https://doi.org/10.1073/pnas.1220351110

    Article  Google Scholar 

  • Taylor RG, Scanlon B, Döll P, Rodell M, Beek RV, Wada Y, Longuevergne L, Leblanc M, Famiglietti J, Edmunds M, Konikow L, Green T, Chen J, Taniguchi M, Bierkens M, MacDonald A, Fan Y, Maxwell R, Yechieli Y, Gurdak J, Allen D, Shamsudduha M, Hiscock K, Yeh P, Holman I, Treidel H (2013) Ground water and climate change. Nature Climate Change 2013 3(4):322–329. https://doi.org/10.1038/nclimate1744

    Article  Google Scholar 

  • Vörösmarty CJ, Mcintyre PB, Gessner MO, Dudgeon D, Prusevich A, Green PA, Glidden S, Bunn SE, Sullivan CA, Liermann CR, Davies PM (2010) Global threats to human water security and river biodiversity. Nature 467(7315):555–561. https://doi.org/10.1038/nature09440

    Article  Google Scholar 

  • US Geological Survey (2007a) Climate variability and change. US Geological Survey Fact Sheet 2007-3108

  • US Geological Survey (2008) Facing tomorrow’s challenges: an overview. US Geological Survey Fact Sheet 2008-3008

  • Yang Z, Zhou Y, Wenninger J, Uhlenbrook S, Wang X, Wan L (2017) Groundwater and surface-water interactions and impacts of human activities in the Hailiutu catchment, Northwest China. Hydrogeol J. https://doi.org/10.1007/s10040-017-1541-0

  • Wada Y, Beek LPHV, Weiland FCS, Chao BF, Wu Y, Bierkens MFP (2012) Past and future contribution of global groundwater depletion to sea-level rise. Geophys Res Lett 39(9). https://doi.org/10.1029/2012GL051230

  • Wahl TL (1995) Determining the flow of Comal Springs at New Braunfels, Texas. Texas Water ‘95. American Soc. of Civil Eng., San Antonio, TX, pp 77–86

    Google Scholar 

  • Wang WK, Wang YL, Duan L, Kong JL (2006) Groundwater environment evaluation and renew ability measure in the Guanzhong Basin (in Chinese). Huanghe Water Resources Press, Zhengzhou, China

    Google Scholar 

  • Wang W, Yang Z, Kong J, Cheng D, Duan L (2013a) Ecological impacts induced by groundwater and their thresholds in the arid areas in Northwest China. Environ Eng Manag J 12(7):1497–1507

    Google Scholar 

  • Wang W, Duan L, Yang X, Tian H (2013b) Shallow groundwater hydro-chemical evolution and simulation with special focus on Guanzhong Basin, China. Environ Eng Manag J 12(7):1447–1455

    Google Scholar 

  • Wang W, Dai Z, Zhao Y, Li J, Duan L, Wang Z, Zhu L (2016) A quantitative analysis of hydraulic interaction processes in stream–aquifer systems. Sci Rep 6:19876. https://doi.org/10.1038/srep19876

    Article  Google Scholar 

  • Wang W, Zhang Z, Yeh TCJ, Qiao G, Wang W (2017) Flow dynamics in vadose zones with and without vegetation in an arid region. Adv Water Resour. https://doi.org/10.1016/J.Advwatres.2017.03.011

  • Zhang Z, Shi D, Ren F, Yin Z, Sun J (1997) Evolution of Quaternary groundwater system in North China Plain. Sci Chin Earth Sci 40(3):276–283. https://doi.org/10.1007/BF02877536

    Article  Google Scholar 

  • Zhang Z, Wang W, Chen L, Zhao Y, An K (2015) Finite analytic method for solving the unsaturated flow equation. Vadose Zone J 14(1). https://doi.org/10.2136/vzj2014.06.0073

  • Zhang Z, Wang W, Yeh TCJ, Chen L, Wang Z (2016) Finite analytic method based on mixed-form Richards’ equation for simulating water flow in vadose zone. J Hydrol 537:146–156. https://doi.org/10.1016/j.jhydrol.2016.03.035

    Article  Google Scholar 

Download references

Funding

This study was supported by the National Natural Science Foundation of China (No. 41230314, U1603243) and Shaanxi Science and Technology Research and Development Project (2014 K15-01-02). The analysis was also partially supported by the program for Changjiang Scholars and Innovative Research Team of the Chinese Ministry of Education (IRT0811). The second author is grateful to the Fundamental Research Funds for the Central Universities (310829175006).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenke Wang.

Additional information

Published in the special issue “Groundwater sustainability in fast-developing China”

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, W., Zhang, Z., Duan, L. et al. Response of the groundwater system in the Guanzhong Basin (central China) to climate change and human activities. Hydrogeol J 26, 1429–1441 (2018). https://doi.org/10.1007/s10040-018-1757-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10040-018-1757-7

Keywords

Navigation