Skip to main content

Advertisement

Log in

Evaluation of diffuse and preferential flow pathways of infiltrated precipitation and irrigation using oxygen and hydrogen isotopes

Evaluation des voies d’écoulement diffuses et préférentielles des précipitations infiltrées et de l’irrigation à l’aide des isotopes de l’oxygène et de l’hydrogène

Evaluación de trayectorias del flujo difuso y preferencial en infiltración por precipitación y riego utilizando isótopos de oxígeno e hidrógeno

利用氧氢同位素评价渗透的降水和灌溉水弥散和优先流通道

Avaliação das vias de fluxo difuso e preferencial da precipitação infiltrada e irrigação utilizando isótopos de oxigênio e hidrogênio

  • Paper
  • Published:
Hydrogeology Journal Aims and scope Submit manuscript

Abstract

Subsurface-water flow pathways in three different land-use areas (non-irrigated grassland, poplar forest, and irrigated arable land) in the central North China Plain were investigated using oxygen (18O) and hydrogen (2H) isotopes in samples of precipitation, soils, and groundwater. Soil water in the top 10 cm was significantly affected by both evaporation and infiltration. Water at 10–40 cm depth in the grassland and arable land, and 10–60 cm in poplar forest, showed a relatively short residence time, as a substantial proportion of antecedent soil water was mixed with a 92-mm storm infiltration event, whereas below those depths (down to 150 cm), depleted δ18O spikes suggested that some storm water bypassed the shallow soil layers. Significant differences, in soil-water content and δ18O values, within a small area, suggested that the proportion of immobile soil water and water flowing in subsurface pathways varies depending on local vegetation cover, soil characteristics and irrigation applications. Soil-water δ18O values revealed that preferential flow and diffuse flow coexist. Preferential flow was active within the root zone, independent of antecedent soil-water content, in both poplar forest and arable land, whereas diffuse flow was observed in grassland. The depleted δ18O spikes at 20–50 cm depth in the arable land suggested the infiltration of irrigation water during the dry season. Temporal isotopic variations in precipitation were subdued in the shallow groundwater, suggesting more complete mixing of different input waters in the unsaturated zone before reaching the shallow groundwater.

Résumé

Les voies d’écoulement des eaux souterraines ont été étudiées dans trois zones d’occupation des terres différentes (prairies non irriguées, forêt de peupliers et terres arables irriguées) dans la plaine centrale de la Chine septentrionale en utilisant les analyses des isotopes de l’oxygène (18O) et de l’hydrogène (2H) d’échantillons des précipitations, des sols et des eaux souterraines. L’eau du sol dans les 10 premiers cm a été significativement affectée par l’évaporation et l’infiltration. L’eau à une profondeur de 10 à 40 cm dans les prairies herbacées et les terres arables et de 10 à 60 cm dans la forêt de peupliers a montré un temps de séjour relativement court, une grande partie de l’eau du sol initiale étant mélangée à un événement d’infiltration de 92 mm, alors qu’en dessous de ces profondeurs (jusqu’à 150 cm), des pointes appauvries en δ18O suggéraient que de l’eau de pluie contournait les couches de sol peu profondes. Des différences significatives dans la teneur en eau du sol et les valeurs de δ18O dans une petite zone suggèrent que la proportion d’eau immobile du sol et d’eau s’écoulant dans les voies souterraines varie en fonction de la couverture végétale locale, des caractéristiques du sol et du recours à l’irrigation. Les valeurs δ18O de l’eau du sol ont révélé que le flux préférentiel et l’écoulement diffus coexistent. L’écoulement préférentiel était actif au sein de la zone racinaire, indépendamment de la teneur initiale en eau du sol, aussi bien dans les forêts de peupliers que pour les terres arables, alors que l’écoulement diffus était observé dans les prairies de graminées. Les pics de δ18O appauvrie à une profondeur comprise entre 20 et 50 cm pour les terres arables ont suggéré une infiltration de l’eau d’irrigation pendant la saison sèche. Les variations isotopiques au cours du temps des précipitations ont été maîtrisées dans les eaux souterraines superficielles, ce qui suggère un mélange plus complet des différentes eaux d’apport dans la zone non saturée avant d’atteindre les eaux souterraines peu profondes.

Resumen

Se investigaron las trayectorias de flujos subsuperficiales en tres zonas de diferentes usos de la tierra (pastizales no irrigados, bosques de álamo y tierras de cultivo irrigadas) en la llanura central del norte de China utilizando isótopos de oxígeno (18O) e hidrógeno (2H) en muestras de precipitación, suelos y aguas subterráneas. El agua del suelo en los 10 cm superiores fue significativamente afectada por la evaporación y la infiltración. El agua a 10–40 cm de profundidad en el pastizal y tierra cultivable, y a 10–60 cm en el bosque de álamo, mostró un tiempo de residencia relativamente corto, ya que una proporción sustancial de agua antecedente del suelo se mezcló con un evento de infiltración de 92 mm, mientras que por debajo de esas profundidades (hasta 150 cm), los picos de δ18O empobrecidos sugirieron que algunas aguas pluviales evitaron las capas superficiales del suelo. Las diferencias significativas en el contenido de agua del suelo y los valores de δ18O en un área pequeña sugirieron que la proporción de agua y agua del suelo inmóviles que fluyen en las trayectorias subterráneas varía dependiendo de la cobertura vegetal local, características del suelo y aplicaciones de riego. Los valores de δ18O en el agua del suelo revelaron que el flujo preferencial y el flujo difuso coexisten. El flujo preferencial fue activo dentro de la zona de las raíces, independientemente del contenido de agua antecedente, en el suelo tanto en el bosque de álamo como en la tierra cultivable, mientras que el flujo difuso se observó en los pastizales. Los picos de δ18O empobrecidos a 20–50 cm de profundidad en la tierra cultivable sugirieron la infiltración de agua de riego durante la estación seca. Las variaciones isotópicas temporales en la precipitación fueron moderadas en el agua subterránea poco profunda, lo que sugiere una mezcla más completa de diferentes aguas de ingreso en la zona no saturada antes de llegar al agua subterránea poco profunda.

摘要

采用降水、土壤和地下水样品中的氧(18O)和氢(2H)同位素对中国华北平原中部三个不同的土地利用区地表以下水流通道进行了研究。上部10 cm的土壤水受到蒸发和入渗的很大影响。草地和耕地10–40 cm深度的地下水及白杨林地10–60 cm 深度的地下水显示出相对短的滞留时间,因为相当大比例的先前土壤水与92 mm暴雨入渗事件相混合,而在这些深度之下(至150 cm),耗尽的δ18O尖峰信号显示,有些暴雨水绕道浅的土壤层。小区域内的土壤水含量和δ18O值表明,不流动的土壤水和地表之下通道内流动的水的比例根据当地的植被层、土壤特征和灌溉应用情况而发生变化。土壤水δ18O值揭示,优先流和弥散流共存。在白杨林地和耕地中,根系带内优先流活跃,不受先前的土壤水含量支配,而在草地中观测到有弥散流。耕地中20–50 cm深度的耗尽δ18O尖峰信号表明,在干旱季节存在着灌溉水的入渗。降水中时间上同位素变化在浅层地下水中减弱,表明在抵达浅层地下水之前,非饱和带中不同来源的水发生更完全的混合。

Resumo

Foram investigadas as vias de fluxo de água em subsuperfície em três diferentes áreas de uso da terra (pastagem não irrigada, floresta de álamo e terra arável irrigada) no centro da Planície de Norte da China usando isótopos de oxigênio (18O) e hidrogênio (2H) em amostras de precipitação, solos e águas subterrâneas. A água do solo nos 10 cm superiores foi significativamente afetada pela evaporação e infiltração. A água a 10–40 cm de profundidade em pastagens e terra arável, e 10–60 cm na floresta de álamo, mostrou um tempo de residência relativamente curto, uma vez que uma proporção substancial de água do solo existente foi misturada com um evento de infiltração de tempestade de 92 mm, enquanto abaixo dessas profundidades (até 150 cm), picos de decaimento do δ18O sugerem que alguma água de tempestade passava pelas camadas superficiais do solo. Diferenças significativas no teor de água do solo e valores de δ18O em uma pequena área sugerem que a proporção de água imobilizada no solo e de água que flui nas vias de fluxo em subsuperfície varia dependendo da cobertura vegetal local, características do solo e aplicações de irrigação. Os valores δ18O da água e do solo revelaram que o fluxo preferencial e o fluxo difuso coexistem. O fluxo preferencial foi ativo dentro da zona radicular, independente do teor de água do solo pré-existente, tanto na floresta de álamo quanto na terra arável, enquanto que o fluxo difuso foi observado em pastagens. Os picos de decaimento do δ18O a 20–50 cm de profundidade na terra arável sugeriram a infiltração de água de irrigação durante a estação seca. As variações isotópicas temporais na precipitação foram suavizadas nas águas subterrâneas rasas, sugerindo uma mistura mais completa de diferentes águas de entrada na zona não saturada antes de atingir as águas subterrâneas rasas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Allen ST, Keim RF, McDonnell JJ (2015) Spatial patterns of throughfall isotopic composition at the event and seasonal timescales. J Hydrol 522:58–66. doi:10.1016/j.jhydrol.2014.12.029

    Article  Google Scholar 

  • Allison GB, Barnes CJ (1983) Estimation of evaporation from non-vegetated surfaces using natural deuterium. Nature 301:143–145. doi:10.1038/301143a0

    Article  Google Scholar 

  • Araguás-Araguás L, Rozanski K, Gonfiantini R, Louvat D (1995) Isotope effects accompanying vacuum extraction of soil water for stable isotope analyses. J Hydrol 168:159–171

    Article  Google Scholar 

  • Asano Y, Uchida T, Ohte N (2002) Residence times and flow paths of water in steep unchannelled catchments, Tanakami, Japan. J Hydrol 261:173–192

    Article  Google Scholar 

  • Barnes CJ, Allison GB (1988) Tracing of water movement in the unsaturated zone using stable isotopes of hydrogen and oxygen. J Hydrol 100:143–176

    Article  Google Scholar 

  • Brodersen C, Pohl S, Lindenlaub M, Leibundgut C, Wilpert KV (2000) Influence of vegetation structure on isotope content of throughfall and soil water. Hydrol Process 14:1439–1448

    Article  Google Scholar 

  • Chen ZY, Qi JX, Xu JM, Xu JM, Ye H, Nan YJ (2003) Paleoclimatic interpretation of the past 30 ka from isotopic studies of the deep confined aquifer of the North China plain. Appl Geochem 18:997–1009

    Article  Google Scholar 

  • Clark ID, Fritz P (1997) Environmental isotopes in hydrogeology. CRC, Boca Raton, FL, 328 pp

    Google Scholar 

  • Craig H (1961) Isotopic variations in meteoric waters. Science 133:1702–1703

    Article  Google Scholar 

  • Dahlke HE, Easton ZM, Lyon SW, Walter MT, Destouni G, Steenhuis TS (2012) Dissecting the variable source area concept: subsurface flow pathways and water mixing processes in a hillslope. J Hydrol 420–421:125–141. doi:10.1016/j.jhydrol.2011.11.052

    Article  Google Scholar 

  • Darling WG, Bath AH (1988) A stable isotope study of recharge processes in the English Chalk. J Hydrol 101:31–46

    Article  Google Scholar 

  • Dawson TE, Ehleringer JR (1991) Streamside trees that do not use stream water. Nature 350:335–337

    Article  Google Scholar 

  • DeWalle DR, Swistock BR (1994) Differences in oxygen-18 content of throughfall and rainfall in hardwood and coniferous forests. Hydrol Process 8:75–82

    Article  Google Scholar 

  • DeWalle DR, Edwards PJ, Swistock BR, Aravena R, Drimmie RJ (1997) Seasonal isotope hydrology of three Appalachian forest catchments. Hydrol Process 11:1895–1906

    Article  Google Scholar 

  • Foster S, Garduno H, Evans R, Olson D, Tian Y, Zhang W, Han Z (2004) Quaternary aquifer of the North China Plain: assessing and achieving groundwater resource sustainability. Hydrogeol J 12:81–93. doi:10.1007/s10040-003-0300-6

    Article  Google Scholar 

  • Gazis C, Feng XH (2004) A stable isotope study of soil water: evidence for mixing and preferential flow paths. Geoderma 119:97–111. doi:10.1016/S0016-7061(03)00243-X

    Article  Google Scholar 

  • Gee GW, Or D (2002) 2.4 Particle-size analysis. Methods of soil analysis: part 4, physical methods, (methosdsofsoilan4). SSSA, Washington, DC, pp 255–293

  • Gonfiatini R (1978) Standards of stable isotope measurement in natural compounds. Nature 271:534–536. doi:10.1038/271534a0

    Article  Google Scholar 

  • Gong B, Zheng YF, Chen RX (2007) TC/EA-MS online determination of hydrogen isotope composition and water concentration in eclogitic garnet. Phys Chem Minerals 34:687–698. doi:10.1007/s00269-007-0184-4

    Article  Google Scholar 

  • Hangen E, Gerke HH, Schaaf W, Hüttl RF (2005) Assessment of preferential flow processes in a forest-reclaimed lignitic mine soil by multicell sampling of drainage water and three tracers. J Hydrol 303:16–37. doi:10.1016/j.jhydrol.2004.07.009

    Article  Google Scholar 

  • Hardie MA, Cotching WE, Doyle RB, Holz G, Lisson S, Mattern K (2011) Effect of antecedent soil moisture on preferential flow in a texture-contrast soil. J Hydrol 398:191–201. doi:10.1016/j.jhydrol.2010.12.008

    Article  Google Scholar 

  • Hopp L, McDonnell JJ (2009) Connectivity at the hillslope scale: identifying interactions between storm size, bedrock permeability, slope angle and soil depth. J Hydrol 376:378–391. doi:10.1016/j.jhydrol.2009.07.047

    Article  Google Scholar 

  • Hsieh JCC, Chadwick OA, Kelly EF, Savin SM (1998) Oxygen isotopic composition of soil water: quantifying evaporation and transpiration. Geoderma 82:269–293

    Article  Google Scholar 

  • Huo SY, Jin MG, Liang X, Lin D (2014) Changes of vertical groundwater recharge with increase in thickness of vadose zone simulated by one-dimensional variably saturated flow model. J Earth Sci 25(6):1043–1050. doi:10.1007/s12583-014-0486-7

    Article  Google Scholar 

  • Ignatev A, Velivetckaia T, Sugimoto A, Ueta A (2013) A soil water distillation technique using He-purging for stable isotope analysis. J Hydrol 498:265–273. doi:10.1016/j.jhydrol.2013.06.032

    Article  Google Scholar 

  • Ingraham NL, Shadel C (1992) A comparison of the toluene distillation and vacuum/heat methods for extracting soil water for stable isotopic analysis. J Hydrol 140:371–387

    Article  Google Scholar 

  • Jaynes DB, Ahmed SI, Kung KJS, Kanwar RS (2001) Temporal dynamics of preferential flow to a subsurface drain. Soil Sci Soc Am J 65:1368–1376

    Article  Google Scholar 

  • Jin MG, Zhang RQ, Sun LF, Gao YF (1999) Temporal and spatial soil water management: a case study in Heilonggang region, PR China. Agric Water Manag 42:173–187

    Article  Google Scholar 

  • Jin MG, Liang X, Simmers I, Gao YF, Zhang RQ (2000) Estimation of groundwater recharge using artificial tritium tracing. In: Proceedings of the International Symposium on Hydrogeology and the Environment, Wuhan, China, 17–21 October 2000. China Environmental Science Press, Beijing, pp 340–345

  • Kabeya N, Katsuyama M, Kawasaki M, Ohte N, Sugimoto A (2007) Estimation of mean residence times of subsurface waters using seasonal variation in deuterium excess in a small head water catchment in Japan. Hydrol Process 21:308–322. doi:10.1002/hyp.6231

    Article  Google Scholar 

  • Koeniger P, Marshall JD, Link T, Mulch A (2011) An inexpensive, fast, and reliable method for vacuum extraction of soil and plant water for stable isotope analyses by mass spectrometry. Rapid Commun Mass Spectrom 25:3041–3048. doi:10.1002/rcm.5198

    Article  Google Scholar 

  • Kortelainen NM, Karhu JA (2004) Regional and seasonal trends in the oxygen and hydrogen isotope ratios of Finnish groundwaters: a key for mean annual precipitation. J Hydrol 285:143–157. doi:10.1016/j.jhydrol.2003.08.014

    Article  Google Scholar 

  • Kung KJS, Steenhuis TS, Kladivko EJ, Gish TJ, Bubenzer G, Helling CS (2000) Impact of preferential flow on the transport of adsorbing and non-adsorbing tracers. Soil Sci Soc Am J 64:1290–1296

    Article  Google Scholar 

  • Landon MK, Delin GN, Komor SC, Regan CP (1999) Comparison of the stable-isotopic composition of soil water collected from suction lysimeters, wick samplers, and cores in a sandy unsaturated zone. J Hydrol 224:45–54

    Article  Google Scholar 

  • Lee KS, Kim JM, Lee DR, Kim Y, Lee D (2007) Analysis of water movement through an unsaturated soil zone in Jeju Island, Korea using stable oxygen and hydrogen isotopes. J Hydrol 345:199–211. doi:10.1016/j.jhydrol.2007.08.006

    Article  Google Scholar 

  • Li FD, Song XF, Tang CY, Liu CM, Yu JJ, Zhang WJ (2007) Tracing infiltration and recharge using stable isotope in Taihang Mt., North China. Environ Geol 53:687–696. doi:10.1007/s00254-007-0683-0

    Article  Google Scholar 

  • Li XZ, Shao MA, Jia XX, Wei XR, He L (2015) Depth persistence of spatial pattern of soil-water storage along a small transect in the Loess Plateau of China. J Hydrol 529:685–695. doi:10.1016/j.jhydrol.2015.08.039

    Article  Google Scholar 

  • Lin D, Jin MG, Liang X, Zhan HB (2013) Estimating groundwater recharge beneath irrigated farmland using environmental tracers fluoride, chloride and sulfate. Hydrogeol J 21:1469–1480. doi:10.1007/s10040-013-1015-y

    Article  Google Scholar 

  • Liu BL, Phillips F, Hoines S, Campbell AR, Sharma P (1995) Water movement in desert soil traced by hydrogen and oxygen isotopes, chloride, and chlorine-36, southern Arizona. J Hydrol 168:91–110

    Article  Google Scholar 

  • Liu JR, Song XF, Yuan GF, Sun XM, Liu X, Wang SQ (2010) Characteristics of δ18O in precipitation over Eastern Monsoon China and the water vapor sources. Chinese Sci Bull 55:200–211. doi:10.1007/s11434-009-0202-7

    Article  Google Scholar 

  • Liu YH, Liu FD, Xu Z, Zhang JP, Wang LX, An SQ (2015) Variations of soil water isotopes and effective contribution times of precipitation and throughfall to alpine soil water, in Wolong Nature Reserve, China. Catena 126:201–208. doi:10.1016/j.catena.2014.11.008

    Article  Google Scholar 

  • Lv MX, Hao ZC, Liu Z, Yu ZB (2013) Conditions for lateral downslope unsaturated flow and effects of slope angle on soil moisture movement. J Hydrol 486:321–333. doi:10.1016/j.jhydrol.2013.02.013

    Article  Google Scholar 

  • Ma FJ, Gao H, Eneji AE, Jin ZZ, Han LP, Liu JT (2016) An economic valuation of groundwater management for agriculture in Luancheng county, North China. Agric Water Manag 163:28–36. doi:10.1016/j.agwat.2015.08.027

    Article  Google Scholar 

  • Mathieu R, Bariac T (1996) An isotopic study (2H and 18O) of water movements in clayey soils under a semiarid climate. Water Resour Res 32(4):779–789

    Google Scholar 

  • McGuire KJ, DeWalle DR, Gburek WJ (2002) Evaluation of mean residence time in subsurface waters using oxygen-18 fluctuations during drought conditions in the mid-Appalachians. J Hydrol 261:132–149

    Article  Google Scholar 

  • Milville F (1990) Contribution à l’étude des mécanismes de la recharge naturelle des aquifères par les pluies en climate semi-aride: application au site expérimental de Barogo au Burkina Faso [Contribution to the study of the mechanisms of natural recharge of aquifers by rainfall in a semi-arid climate: application to the experimental site of Barogo in Burkina Faso]. PhD Thesis, Univ. Pierre et Marie Curie, Paris, 216 pp

  • Mueller MH, Alaoui A, Kuells C, Leistert H, Meusburger K, Stumpp C, Weiler M, Alewell C (2014) Tracing water pathways in steep hillslopes by δ18O depth profiles of soil water. J Hydrol 519:340–352. doi:10.1016/j.jhydrol.2014.07.031

    Article  Google Scholar 

  • Nimmo JR (2005) Unsaturated zone flow processes. In: Anderson MG, Bear J (eds) Encyclopedia of hydrological sciences: part 13, groundwater, vol 4. Wiley, Chichester, UK, pp 2299–2322. doi:10.1002/0470848944.hsa161

    Google Scholar 

  • Nimmo JR (2010) Theory for source-responsive and free-surface film modeling of unsaturated flow. Vadose Zone J 9:295–306. doi:10.2136/vzj2009.0085

    Article  Google Scholar 

  • Nimmo JR (2012) Preferential flow occurs in unsaturated conditions. Hydrol Process 26:786–789. doi:10.1002/hyp.8380

    Article  Google Scholar 

  • Nimmo JR, Mitchell L (2013) Predicting vertically nonsequential wetting patterns with a source-responsive model. Vadose Zone J. doi:10.2136/vzj2013.03.0054

    Google Scholar 

  • O’Driscoll MA, DeWalle DR, McGuire KJ, Gburek WJ (2005) Seasonal 18O variations and groundwater recharge for three landscape types in central Pennsylvania, USA. J Hydrol 303:108–124. doi:10.1016/j.jhydrol.2004.08.020

    Article  Google Scholar 

  • Orlowski N, Frede HG, Brüggemann N, Breuer L (2013) Validation and application of a cryogenic vacuum extraction system for soil and plant water extraction for isotope analysis. J Sens Sens Syst 2:179–193. doi:10.5194/jsss-2-179-2013

    Article  Google Scholar 

  • Orlowski N, Breuer L, McDonnell JJ (2016) Critical issues with cryogenic extraction of soil water for stable isotope analysis. Ecohydrol 9:3–10. doi:10.1002/eco.1722

    Article  Google Scholar 

  • Revesz K, Woods PH (1990) A method to extract soil water for stable isotope analysis. J Hydrol 115:397–406

    Article  Google Scholar 

  • Robertson JA, Gazis CA (2006) An oxygen isotope study of seasonal trends in soil water fluxes at two sites along a climate gradient in Washington state (USA). J Hydrol 328:375–387. doi:10.1016/j.jhydrol.2005.12.031

    Article  Google Scholar 

  • Rodgers P, Soulsby C, Waldron S (2005) Stable isotope tracers as diagnostic tools in upscaling flow path understanding and residence time estimates in a mountainous mesoscale catchment. Hydrol Process 19:2291–2307. doi:10.1002/hyp.5677

    Article  Google Scholar 

  • Rohden C, Kreuzer A, Chen ZY, Kipfer R, Hertig WA (2010) Characterizing the recharge regime of the strongly exploited aquifers of the North China Plain by environmental tracers. Water Resour Res 46, W05511. doi:10.1029/2008WR007660

    Google Scholar 

  • Rusjan S, Brilly M, Mikoš M (2008) Flushing of nitrate from a forested watershed: an insight into hydrological nitrate mobilization mechanisms through seasonal high-frequency stream nitrate dynamics. J Hydrol 354:187–202. doi:10.1016/j.jhydrol.2008.03.009

    Article  Google Scholar 

  • Saxena RK (1987) Oxygen-18O fractionation in nature and estimation of groundwater recharge. Report series A, no. 40, PhD Thesis, Uppsala University, 152 pp

  • Sharma ML, Hughes MW (1985) Groundwater recharge estimation using chloride, deuterium and oxygen-18 profiles in the deep coastal sands of Western Australia. J Hydrol 81:93–109

    Article  Google Scholar 

  • Shi JS, Li GM, Liang X, Chen ZY, Shao JL, Song XF (2014) Evolution mechanism and control of groundwater in the North China Plain (in Chinese with English abstract). Acta Geosci Sin 35(5):527–534. doi:10.3975/cagsb.2014.05.01

    Google Scholar 

  • Shurbaji AM, Phillips FM (1995) Application of a numerical model for simulating water flow, isotope transport, and heat transfer in the unsaturated zone. J Hydrol 171:143–163

    Article  Google Scholar 

  • Smith GI, Friedman I, Klieforth H, Hardcastle K (1979) Areal distribution of deuterium in eastern California precipitation, 1968–1969. J Appl Meteorol 18:172–188

    Article  Google Scholar 

  • Song XF, Wang SQ, Xiao GQ, Wang ZM, Liu X, Wang P (2009) A study of soil water movement combining soil water potential with stable isotopes at two sites of shallow groundwater areas in the North China Plain. Hydrol Process 23:1376–1388. doi:10.1002/hyp.7267

    Article  Google Scholar 

  • Song XF, Wang P, Yu JJ, Liu X, Liu JR, Yuan RQ (2011) Relationships between precipitation, soil water and groundwater at Chongling catchment with the typical vegetation cover in the Taihang mountainous region, China. Environ Earth Sci 62:787–796. doi:10.1007/s12665-010-0566-7

    Article  Google Scholar 

  • Stumpp C, Hendry MJ (2012) Spatial and temporal dynamics of water flow and solute transport in a heterogeneous glacial till: the application of high-resolution profiles of δ18O and δ2H in pore waters. J Hydrol 438–439:203–214. doi:10.1016/j.jhydrol.2012.03.024

    Article  Google Scholar 

  • Stumpp C, Maloszewski P (2010) Quantification of preferential flow and flow heterogeneities in an unsaturated soil planted with different crops using the environmental isotopes δ18O. J Hydrol 394:407–415. doi:10.1016/j.jhydrol.2010.09.014

    Article  Google Scholar 

  • Stumpp C, Maloszewski P, Stichler W, Fank J (2009a) Environmental isotope (δ18O) and hydrological data to assess water flow in unsaturated soils planted with different crops: case study lysimeter station “Wagna” (Austria). J Hydrol 369:198–208. doi:10.1016/j.jhydrol.2009.02.047

    Article  Google Scholar 

  • Stumpp C, Stichler W, Maloszewski P (2009b) Application of the environmental isotope δ18O to study water flow in unsaturated soils planted with different crops: case study of a weighable lysimeter from the research field in Neuherberg, Germany. J Hydrol 368:68–78. doi:10.1016/j.jhydrol.2009.01.027

    Article  Google Scholar 

  • Sugimoto A, Naito D, Yanagisawa N, Ichiyanagi K, Kurita N, Kubota J, Kotake T, Ohata T, Maximov TC, Fedorov AN (2003) Characteristics of soil moisture in permafrost observed in East Siberian taiga with stable isotopes of water. Hydrol Process 17:1073–1092. doi:10.1002/hyp.1180

    Article  Google Scholar 

  • Sun HY, Zhang XY, Wang EL, Chen SY, Shao LW (2015) Quantifying the impact of irrigation on groundwater reserve and crop production: a case study in the North China Plain. European J Agron 70:48–56. doi:10.1016/j.eja.2015.07.001

    Article  Google Scholar 

  • Turner JV, Arad A, Johnston CD (1987) Environmental isotope hydrology of salinized experimental catchments. J Hydrol 94:89–107

    Article  Google Scholar 

  • Walker GR, Woods PH, Allison GB (1994) Interlaboratory comparison of methods to determine the stable isotope composition of soil water. Chem Geo (Isotope Geoscience Section) 111:297–306

    Google Scholar 

  • Wang BG, Jin MG, Nimmo JR, Yang L, Wang WF (2008) Estimating groundwater recharge in Hebei Plain, China under varying land use practices using tritium and bromide tracers. J Hydrol 356:209–222. doi:10.1016/j.jhydrol.2008.04.011

    Article  Google Scholar 

  • Wang WZ, Yoshimura K, Okazaki A, Ono K, Kim W, Yokoi M, Lai CT (2016) Understanding the variability of water isotopologues in near-surface atmospheric moisture over a humid subtropical rice paddy in Tsukuba, Japan. J Hydrol 533:91–102. doi:10.1016/j.jhydrol.2015.11.044

    Article  Google Scholar 

  • West AG, Patrickson SJ, Ehleringer JR (2006) Water extraction times for plant and soil materials used in stable isotope analysis. Rapid Commun Mass Spectrom 20:1317–1321. doi:10.1002/rcm.2456

    Article  Google Scholar 

  • Yang P, Shibasaki R, Wu WB, Zhou QB, Chen ZX, Zha Y, Shi Y, Tang HJ (2007) Evaluation of MODIS land cover and LAI products in cropland of North China Plain using in situ measurements and Landsat TM images. IEEE Trans Geosci Remote Sens 45(10):3087–3097. doi:10.1109/TGRS.2007.902426

    Article  Google Scholar 

  • Zhang ZH (2005) Groundwater in the vast North China Plain (in Chinese). Chinese J Nature 27(6):311–315

    Google Scholar 

  • Zhang ZH, Shi DH, Shen ZL, Zhong ZY, Xue YQ (1997) Evolution and development of groundwater environment in North China Plain under human activities (in Chinese with English abstract). Acta Geosci Sin 18(4):337–344

    Google Scholar 

  • Zhao P, Tang XY, Zhao P, Wang C, Tang JL (2013) Identifying the water source for subsurface flow with deuterium and oxygen-18 isotopes of soil water collected from tension lysimeters and cores. J Hydrol 503:1–10. doi:10.1016/j.jhydrol.2013.08.0

    Article  Google Scholar 

Download references

Acknowledgements

This research was fund by the National Basic Research Program of China (2010CB428802) and the National Natural Science Foundation of China (U1403282). The authors would like to thank Randy Bayless, Christine Stumpp, Dongmei Han, and Hongbing Zhan for their valuable discussions and suggestions for this paper. We wish to thank Dan Lin, Siyuan Huo, Changkun Zhu, Yalei Liu and Lan Yang for sampling and laboratory works. We also wish to thank the editor and reviewers for their useful comments and encouragement.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Bin Ma or Xing Liang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, B., Liang, X., Liu, S. et al. Evaluation of diffuse and preferential flow pathways of infiltrated precipitation and irrigation using oxygen and hydrogen isotopes. Hydrogeol J 25, 675–688 (2017). https://doi.org/10.1007/s10040-016-1525-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10040-016-1525-5

Keywords

Navigation