Skip to main content
Log in

A modified inverse procedure for calibrating parameters in a land subsidence model and its field application in Shanghai, China

Une procédure inverse modifiée pour calibre les paramètres dans un modèle d’affaissement des terrains et son application sur le terrain à Shanghai, Chine

Un procedimiento inverso modificado para calibrar los parámetros en un modelo de subsidencia del terreno y su aplicación de campo en Shanghai, China

地面沉降模型及其在中国上海应用中的参数校正的改进反演方法

Um procedimento inverso modificado para a calibração de subsidência de terrenos e sua aplicação no campo em Shangai, China

  • Paper
  • Published:
Hydrogeology Journal Aims and scope Submit manuscript

Abstract

Land-subsidence prediction depends on an appropriate subsidence model and the calibration of its parameter values. A modified inverse procedure is developed and applied to calibrate five parameters in a compacting confined aquifer system using records of field data from vertical extensometers and corresponding hydrographs. The inverse procedure of COMPAC (InvCOMPAC) has been used in the past for calibrating vertical hydraulic conductivity of the aquitards, nonrecoverable and recoverable skeletal specific storages of the aquitards, skeletal specific storage of the aquifers, and initial preconsolidation stress within the aquitards. InvCOMPAC is modified to increase robustness in this study. There are two main differences in the modified InvCOMPAC model (MInvCOMPAC). One is that field data are smoothed before diagram analysis to reduce local oscillation of data and remove abnormal data points. A robust locally weighted regression method is applied to smooth the field data. The other difference is that the Newton-Raphson method, with a variable scale factor, is used to conduct the computer-based inverse adjustment procedure. MInvCOMPAC is then applied to calibrate parameters in a land subsidence model of Shanghai, China. Five parameters of aquifers and aquitards at 15 multiple-extensometer sites are calibrated. Vertical deformation of sedimentary layers can be predicted by the one-dimensional COMPAC model with these calibrated parameters at extensometer sites. These calibrated parameters could also serve as good initial values for parameters of three-dimensional regional land subsidence models of Shanghai.

Résumé

A modified inverse procedure is developed and applied to calibrate five parameters in a compacting confined aquifer system using records of field data from vertical extensometers and corresponding hydrographs. La prévision de l’affaissement des terrains dépend d’un modèle de subsidence approprié et de la calibration des valeurs de ses paramètres. Une procédure inverse modifiée est développée et appliquée pour calibrer cinq paramètres dans un système aquifère compacté captif en utilisant des enregistrements de données de terrain d’extensomètres verticaux et des hydrographes correspondants. La procédure inverse de COMPAC (InvCOMPAC) a été utilisée dans le passé pour calibrer la conductivité hydraulique verticale des aquitards, les coefficients d’emmagasinement spécifique squelettique non récupérables et récupérables des aquitards, le coefficient d’emmagasinement spécifique squelettique des aquifères, et la contrainte initiale de pré-consolidation dans les aquitards. InvCOMPAC est modifié afin d’accroître la robustesse dans cette étude. Le modèle InvCOMPAC modifié (MInvCOMPAC) est caractérisé par deux principales différences. La première est que les données de terrain sont lissées avant l’analyse du diagramme afin de réduire l’oscillation locale des données et pour supprimer des points anormaux. Une méthode robuste de régression pondérée localement est appliquée pour lisser les données de terrain. La deuxième différence est que la méthode Newton-Raphson, avec un facteur d’échelle variable, est utilisée pour effectuer la procédure numérique inverse d’ajustement. MInvCOMPAC est ensuite appliquée pour calibrer les paramètres du modèle d’affaissement de terrain de Shanghai, Chine. Cinq paramètres d’aquifères et aquitards au niveau de 15 sites équipés d’extensomètres multiples sont calibrés. La déformation verticale des couches sédimentaires peut être prédite à l’aide du modèle unidimensionnel COMPAC pour les paramètres calibrés sur les sites d’extensomètres. Ces paramètres calibrés pourraient également servir de bonnes valeurs initiales pour les paramètres des modèles d’affaissement de terrain tridimensionnels de Shanghai.

Resumen

La predicción de la subsidencia del terreno depende de un adecuado modelo de subsidencia y de la calibración de los valores paramétricos. Se desarrolló y aplicó un procedimiento inverso modificado para calibrar cinco parámetros en un sistema de un acuífero confinado compacto utilizando los datos de registros de campo a partir de extensómetros verticales y de los hidrogramas correspondientes. Se utilizó el procedimiento inverso de COMPAC (InvCOMPAC) en el pasado para la calibración de conductividad hidráulica vertical de los acuitardos, almacenamientos específicos del esqueleto no recuperable y recuperable de los acuitardos, almacenamientos específicos del esqueleto de los acuíferos, y la tensión inicial de preconsolidación dentro de los acuitardos. InvCOMPAC está modificado para aumentar la robustez en este estudio. Hay dos principales diferencias en el modelo InvCOMPAC modificado (MInvCOMPAC). Una es que los datos de campo se suavizan antes del análisis del diagrama para reducir la oscilación local de los datos y eliminar puntos de datos anormales. Se aplica un método de regresión robusto localmente ponderado para suavizar los datos de campo. La otra diferencia es que se utiliza el método de Newton-Raphson, con un factor de escala variable para llevar a cabo el procedimiento computacional de ajuste inverso. MInvCOMPAC se aplica luego para calibrar los parámetros en un modelo de subsidencia del terreno en Shanghai, China. Se calibran cinco parámetros de los acuíferos y acuitardos en 15 sitios con extensómetros múltiples. La deformación vertical de las capas sedimentarias puede ser predicha por un modelo unidimensional COMPAC con estos parámetros calibrados en los sitios con extensómetros. Estos parámetros calibrados podrían también servir como buenos valores iniciales para los parámetros de modelos tridimensionales regionales de subsidencia del terreno en Shanghai.

摘要

地面沉降预测依赖于适当的沉降模型及其参数值的校正。开发了改进的反演方法并应用此程序根据垂直伸缩仪和相应的水位图野外数据记录校正压实承压含水层系统中的五个参数。过去利用COMPAC (InvCOMPAC) 反演方法校正弱透水层的垂直导水率、弱透水层不可恢复及可恢复的骨架单位储水量、含水层的骨架单位储水量及弱透水层内初始固结前的应力。在本研究中,改进了InvCOMPAC以增加稳健性。在改进的InvCOMPAC模型 (MInvCOMPAC) 中,有两个主要差别。一个差别是野外数据在图解分析前被弄平滑以降低数据的局部振荡并除去异常数据点。应用稳健的局部加权回归法平滑野外数据。另一个差别就是利用具有变量比例因子的牛顿—拉夫逊方法运行基于计算机的反演调整方法。然后应用MInvCOMPAC校正中国上海地面沉降模型参数。校正了15个多种伸缩仪布置点含水层和弱透水层的五个参数。根据伸缩仪布置点的这些校正参数通过一维COMPAC模型可以预测沉积层的垂直变形。这些校正的参数还可以充当上海三维区域地面沉降模型参数的很好初始值。

Resumo

A previsão da subsidência de terrenos depende de modelo apropriado e da calibração dos valores dos parâmetros. Um procedimento inverso foi desenvolvido e aplicado na calibração de cinco parâmetros de um sistema aquífero confinado compactado, utilizando dados de campo provenientes de extensômetros verticais e de hidrogramas correspondentes. O procedimento inverso COMPAC (InvCOMPAC) tem sido aplicado para a calibração da condutividade hidráulica vertical de aquitardes com arcabouço de armazenamento específico drenante e não-drenante, do armazenamento específico de aquíferos e do esforço inicial de deformação de aquitardes. InvCOMPAC foi modificado neste estudo para aumentar a eficácia. Há duas diferenças principais no modelo modificado InvCOMPAC (MInvCOMPAC). Uma é a suavização dos dados de campo previamente à análise do diagrama para reduzir as variações pontuais e remover dados anormais. Um método robusto de regressão é localmente aplicado para suavizar os dados de campo. A outra diferença é o método Newton-Raphson com fator de escala variável, aplicado no processo computacional do ajuste inverso. Desse modo, MInvCOMPAC foi aplicado para a calibração de parâmetros no modelo de subsidência de terrenos em Shanghai, China. Foram calibrados cinco parâmetros de aquíferos e aquitardes de 15 extensômetros múltiplos de campo. O modelo unidimensional COMPAC permite prever a deformação vertical de camadas sedimentares com esses parâmetros calibrados de extensômetros de campo. Esses parâmetros calibrados também podem ser utilizados como dados preliminares em modelos regionais tridimensionais de subsidência de terrenos em Shangai.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  • Burbey TJ (2001) Stress–strain analyses for aquifer-system characterization. Ground Water 39:128–136

    Article  Google Scholar 

  • Calderhead AI, Therrien R, Rivera A, Martel R, Garfias J (2011) Simulating pumping-induced regional land subsidence with the use of InSAR and field data in the Toluca Valley, Mexico. Adv Water Resour 34:83–97

    Article  Google Scholar 

  • Carrera J, Alcolea A, Medina A, Hidalgo J, Slooten LJ (2005) Inverse problem in hydrogeology. Hydrogeol J 13:206–222

    Article  Google Scholar 

  • Chai JC, Shen SL, Zhu HH, Zhang XL (2004) Land subsidence due to groundwater drawdown in Shanghai. Geotechnique 54:143–147

    Article  Google Scholar 

  • Cleveland WS (1979) Robust locally weighted regression and smoothing scatter plots. J Am Stat Assoc 74:829–836

    Article  Google Scholar 

  • Cleveland TG, Bravo R, Rogers JR (1992) Storage coefficients and vertical hydraulic conductivities in aquitards using extensometer and hydrograph data. Ground Water 30:701–708

    Article  Google Scholar 

  • Elshall AS, Tsai FTC (2014) Constructive epistemic modeling of groundwater flow with geological structure and boundary condition uncertainty under Bayesian paradigm. J Hydrol 517:105–119

  • Elshall AS, Pham H, Yan L, Tsai FTC, Ye M (2014) Parallel inverse modeling and uncertainty quantification of computationally demanding groundwater flow models using covariance matrix adaptation. ASCE J Hydrol Eng. doi:10.1061/(ASCE)HE.1943-14 5584.0001126

  • Gambolati G, Ricceri G, Bertoni W, Brighenti G, Vuillermin E (1991) Mathematical simulation of the subsidence of Ravenna. Water Resour Res 27:2899–2918

    Article  Google Scholar 

  • Helm DC (1975) One-dimensional simulation of aquifer system compaction near Pixley, California: 1, constant parameters. Water Resour Res 11:465–478

    Article  Google Scholar 

  • Helm DC (1976) One-dimensional simulation of aquifer system compaction near Pixley, California: 2, stress-dependent parameters. Water Resour Res 12:375–391

    Article  Google Scholar 

  • Hoffmann J, Galloway DL, Zebker HA (2003) Inverse modeling of interbed storage parameters using land subsidence observations, Antelope Valley, California. Water Resour Res 39(2), 1040

  • Leake SA, Galloway DL (2010) Use of the SUB-WT Package for MODFLOW to simulate aquifer-system compaction in Antelope Valley, California, USA. In: CarreonFreyre D, Cerca M, Galloway DL, SilvaCorona JJ (eds) Land subsidence, associated hazards and the role of natural resources development. IAHS, Wallingford, UK, pp 61–67

    Google Scholar 

  • Li QF, Fang Z, Wang HM (2000) Calculation and prediction of model of extractive groundwater in Shanghai. Shanghai Geol 12:36–43

    Google Scholar 

  • Liu Y (2006) Inverse problem for finding parameters that control land subsidence caused by subsurface fluid withdrawal. PhD Thesis, Morgan State Univ, Baltimore, MD, USA

    Google Scholar 

  • Liu Y, Helm DC (2008a) Inverse procedure for calibrating parameters that control land subsidence caused by subsurface fluid withdrawal: 1. methods. Water Resour Res 44, W07423. doi:10.1029/2007WR006605

    Google Scholar 

  • Liu Y, Helm DC (2008b) Inverse procedure for calibrating parameters that control land subsidence caused by subsurface fluid withdrawal: 2. field application. Water Resour Res 44, W07424. doi:10.1029/2007WR006606

    Google Scholar 

  • Nocedal J, Wright SJ (2000) Numerical optimization. Springer, Heidelberg, Germany

  • Ortega-Guerrero A, Rudolph DL, Cherry JA (1999) Analysis of long-term land subsidence near Mexico City: field investigations and predictive modeling. Water Resour Res 35:3327–3341

    Article  Google Scholar 

  • Pavelko MT (2004) Estimates of hydraulic properties from a one-dimensional numerical model of vertical aquifer system deformation, Lorenzi Site, Las Vegas, Nevada. US Geol Surv Water Resour Invest Rep

  • Qian SY, Gu XY (1981) Calculation of land subsidence in Shanghai (in Chinese). J Geotech Eng 3(3):1–9

    Google Scholar 

  • Riley FS (1969) Analysis of borehole extensometer data from central California. IAHS Spec Publ 89, IAHS, Wallingford, UK, pp 423–431

  • Shen SL, Xu YS (2011) Numerical evaluation of land subsidence induced by groundwater pumping in Shanghai. Can Geotech J 48:1378–1392

    Article  Google Scholar 

  • Shi X, Wu J, Ye S, Zhang Y, Xue Y, Wei Z, Li Q, Yu J (2008) Regional land subsidence simulation in Su-Xi-Chang area and Shanghai City, China. Eng Geol 100:27–42

    Article  Google Scholar 

  • Teatini P, Ferronato M, Gambolati G, Gonella M (2006) Groundwater pumping and land subsidence in the Emilia-Romagna coastland, Italy: modeling the past occurrence and the future trend. Water Resour Res 42, W01406. doi:10.1029/2005WR004242

    Article  Google Scholar 

  • Teatini P, Castelletto N, Ferronato M, Gambolati G, Tosi L (2011) A new hydrogeologic model to predict anthropogenic uplift of Venice. Water Resour Res 47, W12507. doi:10.1029/2011WR010900

    Article  Google Scholar 

  • Terzaghi K (1925) Settlement and consolidation of clay. In: Principles of soil mechanics, vol IV. McGraw-Hill, New York, pp 874–878

    Google Scholar 

  • Tsai FTC, Sun NZ, Yeh WWG (2003) Global-local optimization for parameter structure identification in three-dimensional groundwater modeling. Water Resour Res 39(2):1043

  • Wu J, Shi X, Ye S, Xue Y, Zhang Y, Wei Z, Fang Z (2010) Numerical simulation of viscoelastoplastic land subsidence due to groundwater overdrafting in Shanghai, China. J Hydrol Eng 15:223–236

    Article  Google Scholar 

  • Ye SJ, Xue YQ (2003) Stress–strain analyses for storage coefficients and vertical hydraulic conductivities in aquitards, Shanghai (in Chinese). Rock Soil Mech 26(2):256–260

    Google Scholar 

  • Ye SJ, Xue YQ, Wu JC, Zhang Y, Wei ZX, Li QF (2011) Regional land subsidence model embodying complex deformation. Proc Inst Civil Eng-Water Manag 164:519–531

    Article  Google Scholar 

  • Ye SJ, Luo Y, Wu JC, Yan XX, Wang HM, Jiao X, Teatini P (2016) Three-dimensional numerical modeling of land subsidence in Shanghai, China. Hydrogeol J. doi:10.1007/s10040-016-1382-2

  • Yeh WWG (1986) Review of parameter-identification procedures in groundwater hydrology: the inverse problem. Water Resour Res 22:95–108

    Article  Google Scholar 

Download references

Acknowledgements

Funding supported by KLLSMP No. 201401, NSFC No. 41272259 and NSF of Jiangsu Province No. BK2012730 is appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shujun Ye.

Additional information

Published in the theme issue “Land Subsidence Processes”

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luo, Y., Ye, S., Wu, J. et al. A modified inverse procedure for calibrating parameters in a land subsidence model and its field application in Shanghai, China. Hydrogeol J 24, 711–725 (2016). https://doi.org/10.1007/s10040-016-1381-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10040-016-1381-3

Keywords

Navigation