Skip to main content

Advertisement

Log in

Basin-scale conceptual groundwater flow model for an unconfined and confined thick carbonate region

Modèle conceptuel d’écoulements d’eau souterraine à l’échelle d’un basin pour une région carbonatée épaisse libre et captive

Modelo conceptual de flujo de agua subterránea a escala de cuenca para un acuífero no confinado y uno confinado en una región de potentes carbonatos

非承压和承压厚层碳酸盐地区流域尺度地下水流概念模型

Modelo conceitual de escoamento de água subterrânea na escala da bacia para uma região carbonácia espessa

  • Paper
  • Published:
Hydrogeology Journal Aims and scope Submit manuscript

Abstract

Application of the gravity-driven regional groundwater flow (GDRGF) concept to the hydrogeologically complex thick carbonate system of the Transdanubian Range (TR), Hungary, is justified based on the principle of hydraulic continuity. The GDRGF concept informs about basin hydraulics and groundwater as a geologic agent. It became obvious that the effect of heterogeneity and anisotropy on the flow pattern could be derived from hydraulic reactions of the aquifer system. The topography and heat as driving forces were examined by numerical simulations of flow and heat transport. Evaluation of groups of springs, in terms of related discharge phenomena and regional chloride distribution, reveals the dominance of topography-driven flow when considering flow and related chemical and temperature patterns. Moreover, heat accumulation beneath the confined part of the system also influences these patterns. The presence of cold, lukewarm and thermal springs and related wetlands, creeks, mineral precipitates, and epigenic and hypogenic caves validates the existence of GDRGF in the system. Vice versa, groups of springs reflect rock–water interaction and advective heat transport and inform about basin hydraulics. Based on these findings, a generalized conceptual GDRGF model is proposed for an unconfined and confined carbonate region. An interface was revealed close to the margin of the unconfined and confined carbonates, determined by the GDRGF and freshwater and basinal fluids involved. The application of this model provides a background to interpret manifestations of flowing groundwater in thick carbonates generally, including porosity enlargement and hydrocarbon and heat accumulation.

Résumé

L’application du concept de modélisation régionale d’écoulements d’eau souterraine contrôlé par la gravité (MRESCG) au système hydrogéologique complexe carbonaté épais de la Chaîne Transdanubienne (CT), Hongrie, est justifiée sur la base du principe de continuité hydraulique. Le concept MRESCG informe sur l’hydraulique du bassin et sur les eaux souterraines en tant qu’agent géologique. Il apparaît clair que l’effet de l’hétérogénéité et de l’anisotropie sur le mode d’écoulement peut être dérivé des réactions hydrauliques du système aquifère. La topographie et la chaleur en tant que forces motrices ont été examinées à l’aide de simulations numériques de l’écoulement et du transport de la chaleur. L’évaluation de groupes de sources, en termes de phénomènes de débits associés et de distribution régionale des chlorures, révèle la prédominance des écoulements associés à la topographie lorsque l’on considère les flux et les modes connexes de distribution de la chimie et des températures. En outre, l’accumulation de la chaleur sous la partie captive du système influence également ces modes de distribution. La présence de sources froides, tièdes et thermales et de zones humides associées, criques, précipités minéraux, et de grottes épigéniques et hypogéniques valide l’existence du MRESCG dans le système. Vice versa, les groupes de sources reflètent l’interaction eau–roche et le transport de chaleur par advection et informent sur l’hydraulique du bassin. A partir de ces résultats, un modèle conceptuel MRESCG généralisé est proposé pour une région carbonatée libre et captive. Une interface a été mise en évidence à proximité de la marge des carbonates libres et captifs, déterminée par le MESRCG, où eau douce et des fluides du bassin sont impliqués. L’application de ce modèle fournit une base pour interpréter les manifestations d’écoulements d’eau souterraine dans des carbonates épais, comprenant généralement l’élargissement de la porosité et l’accumulation d’hydrocarbure et de chaleur.

Resumen

La aplicación del concepto de flujo subterráneo regional forzado por gravedad (GDRGF) a los sistemas de potentes carbonatos potentes hidrogeológicamente complejos de las Transdanubian Range (TR), Hungría, se justifica basado en el principio de continuidad hidráulica. El concepto de GDRGF informa acerca del agua subterránea y de la hidráulica de la cuenca como un agente geológico. Es evidente que el efecto de la heterogeneidad y la anisotropía en el modelo de flujo podría ser derivada de las reacciones hidráulicas del sistema acuífero. Se examinaron la topografía y el calor como forzantes mediante simulaciones numéricas de flujo y de transporte de calor. La evaluación de los grupos de manantiales, en términos relacionados a fenómenos de descarga y la distribución de cloruro regional, revela el predominio de la forzante del flujo por la topografía al considerar los flujos y los patrones químicos y de temperatura relacionados. Por otra parte, la acumulación de calor debajo de la parte confinada del sistema también influye en estos patrones. La presencia de manantiales fríos, templados y calientes y los humedales relacionados, arroyos, precipitados de minerales, y las cuevas epigénicas y hipogénicas verifica la existencia del sistema GDRGF. Viceversa, los grupos de manantiales reflejan la interacción roca–agua y el transporte de calor advectivo e informa sobre el sistema hidráulico de la cuenca. Basado en estos resultados, se propone un modelo conceptual GDRGF generalizado para una región de carbonatos no confinada y confinada. Una interfaz se reveló cerca del margen de los carbonatos no confinados y confinadas, determinada por el GDRGF y por el agua dulce y los fluidos de la cuenca en cuestión. La aplicación de este modelo proporciona generalmente un antecedente para interpretar las manifestaciones del flujo del agua subterránea en carbonatos potentes, incluyendo la ampliación de la porosidad y la acumulación de hidrocarburos y de calor.

摘要

根据水力连续性原则,对重力驱使区域地下水流概念在匈牙利Transdanubian山脉水文地质条件复杂的厚层碳酸盐系统的应用进行了调整。重力驱使区域地下水流概念就是将流域水力学和地下水作为一个地质营力。很明显,不均匀性各向异性对水流模式的影响来自于含水层系统的水力反应。通过水流和热量传输数值模拟对作为驱动力的地形和热量进行了调查。群泉相关的排泄现象和区域氯化物分布评价揭示,鉴于水流和相关的化学和温度模式,地形驱动水流占主导优势。此外,系统承压部分之下的热量积累也影响这些模式。冷泉、微温泉和热泉的出现以及相关湿地、溪流、矿物沉淀物和外成、深成洞穴的出现确认系统中存在着重力驱使区域地下水流。反过来也是如此,泉群反映了岩-水相互作用和平流热量传输,揭示了流域水力学。根据这些发现,提出了非承压和承压碳酸盐地区概化重力驱使区域地下水流概念模型。揭示了非承压和承压碳酸盐边缘附近的界面,这个界面是由重力驱使区域地下水流、淡水和所涉及到的流域流体确定的。这个模型的应用通常提供了解译这个厚层碳酸盐地层中出现流动地下水,包括孔隙度扩大及碳氢化合物和热量积累的背景。

Resumo

A modelagem do sistema carbonácio espesso e hidrogeologicamente complexo da Região da Transdanúbia (RT), na Hungria é realizada por meio da aplicação do conceito do escoamento regional de água subterrânea por gravidade (ERASG), com base no princípio da continuidade hídrica. O conceito ERASG está relacionado com a hidráulica da bacia levando-se em conta as águas subterrâneas como um forçante geológica. Obtiveram-se evidências de que o efeito da heterogeneidade e anisotropia sobre o padrão de escoamento é determinado a partir de respostas hidráulicas do sistema aquífero. O trabalho analisou o comportamento da topografia e do calor como forçantes por meio de simulações numéricas de escoamento e transporte de calor. A avaliação de grupos de fontes, em termos de fenômenos de descarga e distribuição de cloreto, revelou a predominância de forças gravitacionais no escoamento ao considerar conjuntamente ao escoamento a distribuição de constituintes e o padrão de temperaturas. De modo específico, observou-se que o calor acumulado na porção confinada do aquífero influencia tais padrões. A presença de fontes de diferentes temperaturas (frias, mornas e quentes) e corpos de água conectados a este sistema, como pântanos, riachos, precipitações minerais e cavernas epigênicas e hipogênicas validam a existência de ERASG no sistema. Por outro lado, grupos de fontes refletem a interação água–rocha e o transporte advectivo de calor e evidenciam sobre a hidráulica da bacia. Com base nestas evidências, o trabalho propõe um modelo conceitual ERASG generalizado para uma região carbonácia livres e confinadas. Próximo à margem dos carbonatos livres e confinados foi encontrada uma interface determinada pelo ERASG, a água superficial e os fluidos basais presentes. A aplicação do modelo produz um arcabouço de conhecimento suficiente para interpretar de maneira geral fenômenos de escoamento subterrâneo em carbonatos espessos, incluindo-se porosidades variáveis e acumulação de hidrocarbonetos e calor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig 10

Similar content being viewed by others

References

  • Abusaada M, Sauter M (2013) Studying the flow dynamics of a karst aquifer system with an equivalent porous medium model. Ground Water 51(4):641–650. doi:10.1111/j.1745-6584.2012.01003.x

    Google Scholar 

  • Alföldi L, Kapolyi L (eds) (2007) Bányászati karsztvízszintsüllyesztés a Dunántúli-középhegységben [Mining-dewatering in the Transdanubian Range]. Geography Institute of Hungarian Academy of Sciences, Budapest

  • Alföldi L, Bélteky L, Böcker T, Horváth J, Korim K, Rémi R (eds) (1968) Budapest hévizei [Thermal waters of Budapest]. Hungarian Institute for Water Resources Research Budapest, Budapest

  • Alley WM, Bair ES, Wireman M (2013) “Deep” groundwater. Groundwater 51(5):653–654

    Article  Google Scholar 

  • An R, Jiang XW, Wang JZ, Wan L, Wang XS, Li H (2014) A theoretical analysis of basin-scale groundwater temperature distribution. Hydrogeol J 11. doi:10.1007/s10040-014-1197-y

  • Austrian State Archives (2014) Historical maps of the Habsburg Empire. http://mapire.eu/en/. Accessed 10 December 2014

  • Babushkin VD, Böcker T, Borevsky BV, Kovalewsky VS (1975) Regime of subterranean water flows in karst regions. In: Burger A, Dubertret L (eds) Hydrogeology of karstic terrains. Int Union Geol Sci Ser B 3, IAH, Paris, pp 68–78

  • Back WB (1966) Hydrochemical facies and ground-water flow patterns in northern part of the Atlantic Coastal Plain. US Geol Survey Prof Pap 498A, 42 pp

  • Batu V (1998) Aquifer hydraulics: a comprehensive guide to hydrogeologic data analysis. Wiley, New York

    Google Scholar 

  • Bethke CM (1989) Modeling subsurface flow in sedimentary basins. Geol Rund 78:129–154

    Article  Google Scholar 

  • Bjorlykke K (1993) Fluid-flow in sedimentary basins. Sed Geol 86(1–2):137–158

    Article  Google Scholar 

  • Bodor P, Tóth Á, Kovács J, Mádl-Szőnyi J (2014) Multidimensional data analysis of natural springs in a carbonate region. Extended Abstract, EAGE/TNO workshop: Basin Hydrodynamic Systems in Relations to Their Contained Resources, Utrecht, The Netherlands, 6–8 May 2015

  • Bredehoeft JD, Papadopulos IS (1965) Rates of vertical groundwater movement estimated from the Earth’s thermal profile. Water Resour Res 1:325–328

    Article  Google Scholar 

  • Brenčič M (2013) Regional groundwater flow in karstic regions of Slovenia and Istria. In: Mádl-Szőnyi J, Erőss A, Mindszenty A, Tóth Á (eds) (2013) Abstract volume of International Symposium on Hierarchical Flow Systems in Karst Regions, Budapest, September 2013, 54 pp

  • Bretz JH (1949) Carlsbad Caverns and other caves of the Guadalupe block, New Mexico. J Geol 57:447–463

    Article  Google Scholar 

  • Budai T, Császár G, Csillag G, Dudko A, Koloszár L, Majoros Gy (1999) A Balaton-felvidék földtana, Térkép és magyarázó [The geology of Balaton Highland, Map and explanation]. Periodical Hungarian Geol Institute 197:257

  • Cardenas BM, Jiang XW (2010) Groundwater flow, transport, and residence times through topography-driven basins with exponentially decreasing permeability and porosity. Water Resour Res 46(11), W11538. doi:10.1029/2010WR009370

    Google Scholar 

  • Chebotarev I (1955) Metamorphism of natural waters in the crust of weathering. Geochim Cosmochim Acta 8:22–48

  • IPCC (Intergovernmental Panel on Climate Change) (2005) IPCC special report on carbon dioxide capture and storage. Cambridge University Press, Cambridge

  • Collins AG (1975) Geochemistry of oil field waters. Elsevier, Amsterdam

    Google Scholar 

  • Csepregi A (2007) A karsztvíztermelés hatása a Dunántúli–középhegység vízháztartására [The effect of water withdrawal on the water balance of the Transdanubian Range]. In: Alföldi L, Kapolyi L (eds) Bányászati karsztvízszintsüllyesztés a Dunántúli-középhegységben [Mining-dewatering in the Transdanubian Range]. Geography Institute of Hungarian Academy of Sciences, Budapest, pp 77–112

  • Cserepes L, Lenkey L (2004) Forms of hydrothermal and hydraulic flow in a homogeneous unconfined aquifer. Geophys J Int 158:785–797

    Article  Google Scholar 

  • Czauner B (2012) Regional hydraulic function of structural elements and low-permeability formations in fluid flow systems and hydrocarbon entrapment in eastern–southeastern Hungary. PhD Thesis, Eötvös Loránd University, Hungary, 189 pp

  • Deming D (2002) Introduction to hydrogeology. McGraw-Hill, New York

    Google Scholar 

  • Déri-Takács J, Erőss A, Kovács J (2015) The chemical characterization of the thermal waters in Budapest, Hungary by using multivariate exploratory techniques. Environ Earth Sci 1–12. doi:10.1007/s12665-014-3904-3

  • Dombrádi E, Sokoutis D, Bada G, Cloetingh S, Horváth F (2010) Modelling recent deformation of the Pannonian lithosphere: lithospheric folding and tectonic topography. Tectonophys 484:103–118

    Article  Google Scholar 

  • Domenico PA, Palciauskas VV (1973) Theoretical analysis of forced convective heat transfer in regional ground-water flow. Geol Soc Am Bull 84:3803–3814

    Article  Google Scholar 

  • Domenico PA, Schwartz FW (1990) Physical and chemical hydrogeology. Wiley, New York

    Google Scholar 

  • Dreybrodt W (1988) Processes in Karst systems. Springer, Berlin

    Book  Google Scholar 

  • Egemeier SJ (1981) Cavern development by thermal waters. Nat Speleol Soc Bull 43:31–51

    Google Scholar 

  • Engelen GB (2013) Hierarchically nested energy flow systems of planet earth. Proceedings of the International Symposium on Regional Groundwater Flow: Theory, Applications and Future Development, Xi’an, China, 21–23 June 2013, China Geological Survey Commission on Regional Groundwater Flow, IAH, Wallingford, UK, pp 22–25

  • Engelen GB, Kloosterman FH (1996) Hydrological systems analysis: methods and applications. Kluwer, Dordrecht, The Netherlands, 152 pp

  • Erőss A (2010) Characterization of fluids and evaluation of their effects on karst development at the Rózsadomb and Gellért Hill, Buda Thermal Karst, Hungary. PhD Thesis, Eötvös Loránd University, Hungary, 232 pp

  • Erőss A, Mádl-Szőnyi J, Csoma ÉA (2012a) Hypogenic karst development in a hydrogeological context, Buda Thermal Karst, Budapest, Hungary. In: Maloszewski P, Witczak S, Malina G (eds) Groundwater quality sustainability. IAH Selected Papers on Hydrogeology 17. Taylor and Frances, London, pp 119–133

  • Erőss A, Mádl-Szőnyi J, Surbeck H, Horváth Á, Goldscheider N, Csoma AÉ (2012b) Radionuclides as natural tracers for the characterization of fluids in regional discharge areas, Buda Thermal Karst, Hungary. J Hydrol 426–427:124–137

    Article  Google Scholar 

  • Fodor L (2010) Mezozoos-kainozoos feszültségmezõk és törésrendszerek a Pannon-medence ÉNy-i részén: módszertan és szerkezeti elemzés. [Stress-fields and structural settings in the NW Pannonian Basin: methods and structural analysis]. PhD Thesis, Magyar Tudományos Akadémia, Hungary, 114 pp

  • Fodor L (2013) A Budai-hegység felépítését szemléltető K–NY-i irányú szelvények [Geological sections across Budapest E–W]. In: Mindszenty A (ed) Budapest: földtani értékek és az ember—városgeológiai tanulmányok [Budapest: geological values and man—urbangeological studies]. Eötvös University Press, Budapest

  • Fodor L, Koroknai B, Balogh K, Dunkl I, Horváth P (2003) Nappe position of the Transdanubian Range Unit (‘Bakony’) based on new structural and geochronological data from NE Slovenia. Föld Köz 133:535–546

    Google Scholar 

  • Ford DC, Williams PDW (2007) Karst hydrogeology and geomorphology. Wiley, Chichester, UK

  • Freeze RA, Witherspoon PA (1967) Theoretical analysis of regional groundwater flow: 2. effect of water-table configuration and subsurface permeability variation. Water Resour Res 3(2):623–634

  • Gleeson T, Manning AH (2008) Regional groundwater flow in mountainous terrain: three-dimensional simulations of topographic and hydrogeologic controls. Water Resour Res 44:W10403. doi:10.1029/2008WR006848

    Google Scholar 

  • Goderniaux P, Davy P, Bresciani E, de Dreuzy JR, Le Borgne T (2013) Partitioning a regional groundwater flow system into shallow local and deep regional flow compartments. Water Resour Res 49:2274–2286. doi:10.1002/wrcr.20186

    Article  Google Scholar 

  • Goldscheider N, Drew D (2007) Methods in Karst hydrogeology. IAH International Contributions to Hydrogeology, Taylor & Francis, London

  • Goldscheider N, Mádl-Szőnyi J, Erőss A, Schill E (2010) Review: thermal water resources in carbonate rock aquifers. Hydrogeol J 18(6):1303–1318

    Article  Google Scholar 

  • Gunn J, Bottrell SH, Lowe DJ, Worthington SRH (2006) Deep groundwater flow and geochemical processes in limestone aquifers: evidence from thermal waters in Derbyshire, England, UK. Hydrogeol J 14:868–881

    Article  Google Scholar 

  • Haas J (ed) (2001) Geology of Hungary. Eötvös University Press, Budapest

    Google Scholar 

  • Han WS, McPherson BJ (2009) Optimizing geologic CO2 sequestration by injection in deep saline formations below oil reservoirs. Energ Conv Manag 50(10):2570–2582

    Article  Google Scholar 

  • Hanor JS (1987) Origin and migration of subsurface sedimentary brines. SEPM Short Course Lecture Notes, 21, SEPM, Tulsa, OK, 247 pp

  • Hanor JS (1994) Origin of saline fluids in sedimentary basins. In: Parnell J (ed) Geofluids: origin, migration and evolution of fluids in sedimentary basins. Geol Soc Spec Pub 78:151–174

  • Harrison WJ, Summa LL (1991) Paleohydrology of the Gulf of Mexico basin. Am J Sci 291:109–176

    Article  Google Scholar 

  • Hartmann A, Goldscheider N, Wagener T, Lange J, Weiler M (2014) Karst water resources in a changing world: review of hydrological modeling approaches. Rev Geophys 52: doi:10.1002/2013RG000443

  • Hill CA (1987) Geology of Carlsbad Cavern and other caves in the Guadalupe Mountains, New Mexico and Texas. NM Bureau Mines Min Resour Bull 117:150

  • Hőriszt Gy (1971) Hydrogeology of the Nyirád bauxite region and the results of active water protection. Proceedings of the Second International Symposium of ICSOBA, vol 2, Budapest, October 6–10, 1969, pp 99–112

  • Hubbert MK (1940) The theory of ground-water motion. J Geol XLVIII 8(1):785–944

    Article  Google Scholar 

  • Hungarian Ministry of Agriculture (2014) Cave inventory of Hungary. http://www.termeszetvedelem.hu/index.php?pg=caves. Accessed 10 December 2014

  • Jiang XW, Wan L, Cardenas MB, Ge S, Wang XS (2010) Simultaneous rejuvenation and aging of groundwater in basins due to depth-decaying conductivity and porosity. Geophys Res Lett 37:L05403. doi:10.1029/2010GL042307

    Google Scholar 

  • Jiang XW, Wang XS, Wan L, Ge S (2011) An analytical study on stagnation points in nested flow systems in basins with depth-decaying hydraulic conductivity. Water Resour Res 47:W01512. doi:10.1029/2010WR009346

    Google Scholar 

  • Jocha-Edelényi E (1997) A geológiai felépítés hatása a Dunántúli-középhegységi karsztvízdepressziók visszatöltődésében [The effect of geological built up on the regression of karst water depressions]. In: A Magyar Geológiai Szolgálat 1996. évi beszámolója [Year Book of 1996 of the Hungarian Geological Institute]. Hungarian Geol. Institute, Budapest, pp 25–27

  • Király L (1975) Rapport sur l’état actuel des connaissances dans le domaine des caractéres physiques des roches karstiques [Report on the current state of knowledge in the field of physical characteristics of karst rocks]. In: Burger A, Dubertret L (eds) Hydrogeology of karstic terrains. Int Union Geol Sci Ser B 3, IAH, Paris, pp 53–67

  • Király L, Morel G (1976) Etude de régularisation de l’Areuse par modèle mathématique [Regularization study of Areuse by mathematical model]. Bull Centre Hydrogéol 1:19–36

  • Klimchouk AB (2007) Hypogene speleogenesis: hydrogeological and morphogenetic perspective. Special paper no. 1, National Cave and Karst Research Institute, Carlsbad, NM, 106 pp

  • Klimchouk A (2009) Morphogenesis of hypogenic caves. Geomorphology 106:100–117

    Article  Google Scholar 

  • Klimchouk AB, Ford DC (eds) (2009) Hypogene speleogenesis and Karst hydrogeology of Artesian Basins. Special paper 1, Ukrainian Institute of Speleology and Karstology, Simferopol, Ukraine, 280 pp

  • Klimchouk AB, Tymokhina EI, Amelichev GN (2012) Speleogenetic effects of interaction between deeply derived fracture–conduit flow and intrastratal matrix flow in hypogene karst settings. Int J Speleol 41(2):37–55. doi:10.5038/1827-806X.41.2.4

    Article  Google Scholar 

  • Kovács A, Sauter M (2007) Modelling Karst hydrodynamics. In: Goldscheider N, Drew D (eds) Methods in Karst hydrogeology. International Contributions to Hydrogeology, 26, IAH, Wallingford, UK, pp 201–220

  • Kovács J, Müller P (1980) A budai-hegyek hévizes tevékenységének kialakulása és nyomai [Evolution and evidence of the thermal water activity in the Buda Hills]. Karszt Barl 2:93–98

  • Kresič N, Stevanovič Z (2009) Groundwater hydrology of springs: engineering, theory, management, and sustainability. Elsevier, Amsterdam

  • LaMoreaux PE, LeGrand HE, Stringfield VT, Tolson JS (1975) Progress of knowledge about hydrology of carbonate terranes. Alabama Geol Surv Bull 94, part E, 168 pp

  • Langmuir D (1971) The geochemistry of carbonate ground waters in central Pennsylvania. Geochim Cosmochim Acta 35:1023–1045

    Article  Google Scholar 

  • Lapcevic PA, Novakowski KS, Sudicky EA (1999) Groundwater flow and solute transport in fractured media. In: Delleur JW (ed) The handbook of groundwater engineering. CRC, New York

    Google Scholar 

  • Lenkey L, Dövényi P, Horváth F, Cloething SAPL (2002) Geothermics of the Pannonian Basin and its bearing on the neotectonics. EGU Stephan Muell Spec Publ Ser 3:29–40

    Article  Google Scholar 

  • Liang X, Liu Y, Jin M, Lu X, Zhang R (2010) Direct observations of complex Tóthian groundwater flow systems in the laboratory. Hydrol Proc 24:3568–3573. doi:10.1002/hyp.7758

    Article  Google Scholar 

  • Lorberer Á (1986) A Dunántúli-középhegység karsztvízföldtani és vízgazdálkodási helyzetfelmérése és döntés előkészítő értékelése [Evaluation and outline of the karst hydrogeology and water management of the Transdanubian Range]. Hungarian Water Resources Research, Budapest

  • Mádl-Szőnyi J, Tóth Á (2014) Simulation of gravity-driven fluid flow and temperature distribution in thick carbonates. Extended Abstract for EAGE/TNO Workshop: Basin Hydrodynamic Systems in Relations to Their Contained Resources, Utrecht, The Netherlands, 6–8 May 2015

  • Marklund L, Wörman A (2011) The use of spectral analysis-based exact solutions to characterize topography-controlled groundwater flow. Hydrogeol J 19(8):1531–1543. doi:10.1007/s10040-011-0768-4

    Article  Google Scholar 

  • Martinecz Á, Mádl-Szőnyi J, Havril T, Molson J, Simon Sz (2014) Numerical interpretation of groundwater flow in the Buda Thermal Karst, Hungary. Proceedings for Karst Without Boundaries International Conference and Field Seminar, Trebinje, Bosnia and Herzegovina, 11–15 June 2014, 229 pp

  • Palmer AN (1991) Origin and morphology of limestone caves. Geol Soc Am Bull 103:1–21

    Article  Google Scholar 

  • Palmer AN (2000) Hydrogeologic control of cave patterns. In: Klimchouk A, Ford D, Palmer A, Dreybrodt W (eds) Speleogenesis: evolution of Karst aquifers. National Speleological Society, Huntsville, AL, pp 77–90

  • Papp F (1942) Budapest meleg gyógyforrásai [Thermal medicinal springs of Budapest]. A Budapesti Központi Gyógy- és Üdülőhelyi Bizottság Rheuma és Fürdőkutató Intézet Kiadványa [Book of the Central Resort Spa and Rheumatology Research Institute], Budapest

  • Peterson RN, Viso RF, MacDonald IR, Joye SB (2013) On the utility of radium isotopes as tracers of hydrocarbon discharge. Mar Chem 156:98–107

    Article  Google Scholar 

  • Pohl K (1973) Procédés speciaux de prevention d’inondations souterraines et d’exploition miniére des eaux de karst emloyés en Hongrie. Travaux, du Comité International pour l’étude des bauxites, des oxydes at des hydroxides d’aluminium. [Special procedures of prevention of underground flooding and usage of minerals of karst water in Hungary. International Community for the Study of Bauxites, Oxydes and Hydroxides of Aluminium]. Yugoslavian Academy of Sciences and Arts., Zagreb, Croatia, pp 69–76

  • Poros Z, Mindszenty A, Molnár F, Pironon J, Győri O, Ronchi P, Szekeres Z (2012) Imprints of hydrocarbon bearing basinal fluids on a karst system: mineralogical and fluid inclusion studies from the Buda Hills, Hungary. Int J Earth Sci 10:429–452

    Article  Google Scholar 

  • Royden, LH, Horváth F (eds) (1988) The Pannonian Basin: a study in basin evolution. Amer Assoc Petrol Geol Memoir 45, 394 pp

  • Ruszkiczay-Rüdiger Z, Dunai TJ, Bada G, Fodor L, Horváth E (2005) Middle to late Pleistocene uplift rate of the Hungarian Mountain Range at the Danube Bend, (Pannonian Basin) using in situ produced 3He. Tectonophys 410:173–187

    Article  Google Scholar 

  • Sass I (2007) Geothermie und Grundwasser [Geothermics and groundwater]. Grundwasser 12(2):93

    Article  Google Scholar 

  • Sauter M (1992) Quantification and forecasting of regional groundwater flow and transport in a Karst aquifer (Galklusquelle, Malm, SW Germany). Tub Geowissen Arb Part C 13:151

    Google Scholar 

  • Scanlon BR, Mace RE, Barrett ME, Smith B (2003) Can we stimulate regional groundwater flow in a Karst system using equivalent porous media models? Case study, Barton Springs Edwards aquifer, USA. J Hydrol 276:137–158

    Article  Google Scholar 

  • Tari G (1994) Alpine tectonics of the Pannonian Basin. PhD Thesis, Rice University,Houston, USA, 501 pp

  • Tari G, Horváth F (2010) A Dunántúli-középhegység helyzete és eoalpi fejlődéstörténete a Keleti-Alpok takarós rendszerébe: egy másfél évtizedes tektonikai modell időszerűsége [The position of the Transdanubian Range in the nappe structure of the Eastern Alps: the actuality of a half and a decade tectonic model]. Föld Köz 140(4):463–505

  • Teutsch G, Sauter M (1998) Distributed parameter modeling approaches in karst hydrological investigations. Bull Centre Hydrogéol 16:99–109

  • Thrailkiil J (1968) Chemical and hydrologic factors in the excavation of limestone caves. Geol Soc Am Bull 79(1):19–46

    Article  Google Scholar 

  • Tóth J (1962) A theory of groundwater motion in small drainage basins in central Alberta, Canada. J Geophys Res 67(11):4375–4387

    Article  Google Scholar 

  • Tóth J (1963) A theoretical analysis of groundwater flow in small drainage basins. J Geophys Res 68:4795–4812

    Article  Google Scholar 

  • Tóth J (1971) Groundwater discharge: a common generator of diverse geologic and morphologic phenomena. IASH Bull 16(1–3):7–24

    Google Scholar 

  • Tóth J (1995) Hydraulic continuity in large sedimentary basins. Hydrogeol J 3(4):4–16

    Article  Google Scholar 

  • Tóth J (1999) Groundwater as a geologic agent: an overview of the causes, processes, and manifestations. Hydrogeol J 7:1–14

    Article  Google Scholar 

  • Tóth J (2009a) Gravitational systems of groundwater flow theory, evaluation, utilization. Cambridge University Press, Cambridge

  • Tóth J (2009b) Springs seen and interpreted in the context of groundwater flow-systems. GSA Annual Meeting 2009, Portland, 18–21 October 2009. Geol Soc Am Abst Prog 41(7):173

    Google Scholar 

  • Tóth J (2013) Groundwater flow systems: analysis, characterization and agency in Karst genesis. A1. REGFLOW and MANKARST Training course. International Symposium on Hierarchical Flow systems on Karst Regions, Budapest, 2–3 September 2013. Supp Note Session 2, pp 1–14. http://www.karstflow2013.org/?nic=training-course. Accessed July 2014

  • Tsang CF, Niemi A (2013) Deep hydrogeology: a discussion of issues and research needs. Hydrogeol J 21:1687–1690

    Article  Google Scholar 

  • Turcotte DL, Schubert G (1982) Geodynamics applications of continuum physics to geological problems. Wiley, New York, 450 pp

    Google Scholar 

  • Vendel M, Kisházi P (1964) Összefüggések melegforrások és karsztvizek között a Dunántúli-középhegységben megfigyelt viszonyok alapján [Relationships between thermal springs and karst waters based on the observations in the Transdanubian Range]. Hungarian Academy of Sciences, Budapest

  • Wellman TP, Poeter EP (2006) Evaluating uncertainty in predicting spatially variable representative elementary scales in fractured aquifers, with application to Turkey Creek Basin, Colorado. Water Resour Res 42(8):W08410. doi:10.1029/2005WR004431

    Google Scholar 

  • White WB (1988) Groundwater flow in Karstic aquifers. In: Delleur JW (ed) The handbook of groundwater engineering. CRC, Boca Raton, FL

    Google Scholar 

  • White WB (2002) Karst hydrology: recent developments and open questions. Eng Geol 65:85–105

    Article  Google Scholar 

  • Worthington SRH (1999) A comprehensive strategy for understanding flow in carbonate aquifers. In: Palmer AN, Palmer MV, Sasowsly ID (eds) Karst modeling. Karst Waters Institute, Special Pub. 5, Charles Town, W VA, pp 30–37

  • Worthington SRH, Ford DC (1995) High sulfate concentrations in limestone springs: an important factor in conduit initiation? Environ Geol 25:9–15

    Article  Google Scholar 

  • Worthington SRH, Davies GJ, Ford DC (2000) Matrix, fracture and channel components of storage and flow in a Paleozoic limestone aquifer. In: Sasowsky ID, Wicks CM (eds) Groundwater flow and contaminant transport in carbonate aquifers. Balkema, Rotterdam, pp 113–128

    Google Scholar 

  • Zhang G, Taberner C, Cartwright L, Xu T (2011) Injection of supercritical CO2 into deep saline carbonate formations: predictions from geochemical modeling. SPE J 16(4):959–967. doi:10.2118/121272-PA

    Article  Google Scholar 

  • Zhang R, Liang X, Jin M (2013) Tothian theory is the paradigm of modern hydrogeology. Mádl-Szőnyi J, Erőss A, Mindszenty A, Tóth Á (eds) (2013) Proceedings of the International Symposium on Hierarchical Flow Systems in Karst Regions, Budapest, September 2013, 146 pp

  • Zijl W (1999) Scale aspects of groundwater flow and transport systems. Hydrogeol J 7:139–150

    Article  Google Scholar 

  • Zimmerman WBJ (2006) Multiphysics modeling with finite element methods. World Scientific, Singapore

Download references

Acknowledgements

The authors would like to acknowledge the financial support of the Hungarian Scientific Research Found (NK 101356) regarding those findings related to the Buda Thermal Karst of the Transdanubian Range (TR). Fruitful discussions with József Tóth, Yuan Daoxian, Nico Goldscheider, Tímea Havril, John Molson, Mihael Brenčič, Neven Kresic, Zoran Stevanovic, Pierre-Yves Jeannin, Louise Maurice, György Tóth and Alexander Klimchouk have helped the authors to formulate the content of the paper. The water-table data for the TR were provided by András Csepregi, and for the area around Hévíz, by Emőke Jocha-Edelényi; the location and distinction of origin of the epigenic and hypogenic caves were provided by Attila Gazda. Access to the Comsol Multiphysics software was given by Attila Galsa and the Department of Geophysics and Space Science at Eötvös Loránd University, Hungary; their help is highly appreciated. The technical support of Petra Bodor, Tímea Havril and Eszter Vakarcs is also gratefully acknowledged. The inspiring criticism of Weon Shik Han and three anonymous reviewers are highly appreciated. Finally the detailed comments and corrections of the manuscript by József Tóth, Andrea Mindszenty and John Molson are widely appreciated and helped to improve the quality of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Judit Mádl-Szőnyi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mádl-Szőnyi, J., Tóth, Á. Basin-scale conceptual groundwater flow model for an unconfined and confined thick carbonate region. Hydrogeol J 23, 1359–1380 (2015). https://doi.org/10.1007/s10040-015-1274-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10040-015-1274-x

Keywords

Navigation