Skip to main content

Advertisement

Log in

Baseflow recession analysis in the inland Pacific Northwest of the United States

Analyse des récessions des débits de base dans l’arrière-pays du Pacifique Nord-Ouest des Etats-Unis d’Amérique

Análisis de la recesión del flujo base en noroeste continental del Pacífico de los Estados Unidos

美国内陆太平洋西北地区基流衰退分析

Análise da recessão do escoamento de base na parte continental do Pacífico noroeste dos Estados Unidos

  • Paper
  • Published:
Hydrogeology Journal Aims and scope Submit manuscript

Abstract

The storage-discharge relationships of 26 watersheds in the inland Pacific Northwest of the United States were analyzed. Four fitting methods were used to obtain the baseflow coefficients: lower envelope, organic correlation, and ordinary and inverse least squares. Several climatic and terrain attributes were evaluated as predictors of baseflow coefficients. Watersheds dominated by basalt and flatter landscapes exhibited the smallest recession time scales (K) (12.5–20.0 days). Greater K values (33.3–66.7 days) were obtained over catchments dominated by metamorphic and sedimentary rocks. Mean basin slope and the aridity index were found to be the best estimators of baseflow coefficients. Baseflow in flat basalt landscapes, located in dry warm climates, decrease rapidly during summer months and are most sensitive to future droughts and warming climates. Groundwater systems feeding streams during the driest months can drop to less than 1 mm of effective storage in these sensitive systems. In contrast, the minimum annual storage in mountainous systems can have greater than 10 mm effective storage. By understanding the main factors controlling baseflow recession characteristics, environmental agencies could prioritize efforts in areas where future droughts and land use changes may affect ecological assemblages and socio-economic activities.

Résumé

Les relations entre stockage et décharge de 26 bassins versants dans l’arrière-pays du Pacifique Nord-Ouest des Etats-Unis d’Amérique ont été analysées. Quatre méthodes d’ajustement ont été utilisées pour obtenir les coefficients de débit de base: l’enveloppe inférieure, la corrélation organique, moindres carrés simple et inverse. Plusieurs paramètres climatiques et de terrain ont été évalués en tant que facteurs prédictifs des coefficients de débit de base. Les bassins versants dominés par le basalte et des morphologies plates sont caractérisés par les plus petites échelles de temps de récession (K) (12.5–20.0 jours). Des valeurs supérieures de K (33.3–66.7 jours) ont été obtenues pour des bassins versants dominés par des roches métamorphiques et sédimentaires. La pente moyenne des bassins et l’indice d’aridité se sont révélés être les meilleurs estimateurs des coefficients de débits de base. Le débit de base dans les bassins basaltiques à la morphologie plate localisés dans des climats secs et chauds diminue rapidement au cours des mois d’été et sont beaucoup plus sensibles à de futures sécheresses et des climats de réchauffement. Les systèmes d’eaux souterraines alimentant les cours d’eau au cours des mois les plus secs peuvent voir leur stock d’eau efficace chuter à moins d’1mm au sein de ces systèmes sensibles. Par contre, le stockage minimum annuel dans les systèmes montagneux peut être supérieur à 10mm de stockage d’eau efficace. En comprenant les principaux facteurs qui contrôlent les caractéristiques de la récession des débits de base, les agences environnementales pourraient définir les efforts prioritaires à mettre en œuvre dans les zones où les sécheresses futures et les modifications de l’utilisation du sol pourraient impacter les assemblages écologiques et les activités socio-économiques.

Resumen

Se analizan las relaciones almacenamiento – descarga de 26 cuencas del noroeste continental del Pacífico de los Estados Unidos. Se usaron cuatro métodos de ajustes para obtener los coeficientes del flujo base: límite inferior inferior, correlación orgánica, mínimos cuadrados ordinarios e inversos. Se evaluaron los atributos climáticos y geomorfológicos como predictores de los coeficientes del flujo base. Las cuencas dominadas por basaltos y topografías llanas exhibieron las escalas de tiempos de recesión menores (K) (12.5–20.0 días). Los valores mayores de K (33.3–66.7 días) se obtuvieron sobre cuencas dominadas por rocas sedimentarias y metamórficas. Se encontró que la pendiente media a la cuenca y el índice de aridez parecen ser los mejores estimadores de los coeficientes del flujo de base. El flujo base en paisajes basálticos llanos situados en climas cálidos secos, decrece rápidamente durante el verano y son más sensibles a futuras sequías y al aumento de la temperatura. Durante los meses más secos los sistemas de agua subterránea que alimentan a las corrientes pueden caer a menos de 1 mm de almacenamiento efectivo en estos sistemas sensibles. En contraste, el almacenamiento anual mínimo en sistemas montañosos puede tener más que 10 mm de almacenamiento efectivo. Al comprender los principales factores que controlan las características de la recesión del flujo base, las agencias ambientales podrían priorizar esfuerzos en áreas donde futuras sequías y cambios en el uso de la tierra pueden afectar el ensamblaje ecológico y las actividades socio económicas.

摘要

分析了美国内陆太平洋西北地区26个流域存储-排泄的相互关系。采用四个拟合方法获取了基流系数:下外壳层、有机关系、普通最小平方和反转最小平方。对作为基流系数预报因素的若干个气候和地势属性进行了评估。由玄武岩和较平坦地貌主导的流域显示衰退时标(K)最小(12.5–20.0天)。而由变质岩和沉积岩主导的流域衰退时标较大(33.3–66.7天)。发现平均盆地坡度和干燥指数是基流系数的最佳估计量。位于干燥温暖气候条件下平坦玄武岩地貌中的基流在夏季迅速降低,对未来干旱和变暖气候最敏感。在最干旱月份补给河流的地下水系统在这些敏感系统中有效存储量下降到不足1 mm。与此相反,山区系统中最小年存储有效存储量可大于10 mm。通过了解控制基流衰退特征的主要因素,环境机构可以优先把重点放在未来干旱和土地利用变化可能影响生态总体和社会-经济活动的地区。

Resumo

Foram analisadas as relações armazenamento-descarga de 26 bacias hidrográficas na parte continental do Pacífico noroeste dos Estados Unidos. Quatro métodos foram usados para obter os coeficientes de escoamento de base: envelope inferior, correlação orgânica e de mínimos quadrados ordinário e inverso. Vários atributos climáticos e de terreno foram avaliados como preditores dos coeficientes de escoamento de base. Bacias hidrográficas dominadas por basaltos e por paisagens mais planas exibem as menores escalas de tempo de recessão (K) (12.5–20.0 dias). Valores superiores de K (33.3–66.7 dias) foram obtidos em bacias hidrográficas dominadas por rochas metamórficas e sedimentares. Valores médios de inclinação da bacia e o índice de aridez foram considerados os melhores estimadores dos coeficientes de escoamento de base. Os escoamentos de base em ambientes de basaltos em zonas planas localizadas em climas secos e quentes decrescem rapidamente durante os meses de verão e são mais sensíveis a futuras secas e ao aquecimento climático. Os sistemas de águas subterrâneas que alimentam cursos de água durante os meses mais secos podem baixar para menos de 1 mm de armazenamento efetivo nestes sistemas sensíveis. Em contraste, o armazenamento mínimo anual em sistemas montanhosos pode ser superior a 10 mm de armazenamento efetivo. Através do entendimento dos fatores principais que controlam as caraterísticas de recessão do escoamento de base, as agências ambientais poderiam priorizar os esforços nas áreas onde futuras secas ou alterações do uso do solo podem afetar as estruturas ecológicas e as atividades socioeconómicas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

Download references

Acknowledgements

This project was funded by the joint venture agreement (No. 10-JV-11221634-252) between USDA-Forest Service Rocky Mountain Research Station and the University of Idaho. The authors thank the insights and useful comments from two anonymous reviewers.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Sánchez-Murillo.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 1177 kb)

Appendix 1

Appendix 1

To estimate the baseflow coefficients (i.e. a and b), four different fitting methods were used: lower envelope, the organic correlation technique (Eqs. 9 and 10), ordinary (Eqs. 11 and 12) and inverse (Eqs. 13 and 14) least square estimation. There is some argument over the best technique for fitting a line through data: either ordinary least squares (the commonly used approach in statistics), inverse least squares, or the organic correlation technique described by Hirsch and Gilroy (1984). The ordinary least squares technique determines a line which minimizes the sum of the square errors in the vertical or y direction. This is the preferred method for estimating a particular value of y, given a value of x where x is measured without error (Hirsch and Gilroy 1984). Conversely, the inverse least squares method is used to estimate x (assumed measured without error) given a value of y. The organic correlation technique minimizes the sum of the squared geometric means of the distances in both the vertical and horizontal directions. This technique is not suited for minimizing estimation errors, but is most applicable for establishing equivalence between x and y. In addition, Brutsaert (2005) emphasized that in hilly watersheds, it may be advisable to analyze an average value of the baseflow coefficients.

$$ \alpha =\left[\mathrm{average}\left(\frac{dQ}{dt}\right)-\mathrm{average}(Q)\right]x\ \mathrm{sign}\left[\mathrm{correl}\left(Q,\frac{dQ}{dt}\right)\right]\times \frac{\mathrm{StdevP}\left(\frac{dQ}{dt}\right)}{\mathrm{StdevP}(Q)} $$
(9)
$$ b=\mathrm{sign}\left[\mathrm{correl}\left(Q,\frac{dQ}{dt}\right)\right]\times \frac{\mathrm{StdevP}\left(\frac{dQ}{dt}\right)}{\mathrm{StdevP}(Q)} $$
(10)
$$ \alpha =\left[\mathrm{average}\left(\frac{dQ}{dt}\right)-\mathrm{average}(Q)\right] \times \mathrm{correl}\left(Q,\frac{dQ}{dt}\right)\times \frac{\mathrm{StdevP}\left(\frac{dQ}{dt}\right)}{\mathrm{StdevP}(Q)} $$
(11)
$$ b=\mathrm{correl}\left(Q,\frac{dQ}{dt}\right)\times \frac{\mathrm{StdevP}\left(\frac{dQ}{dt}\right)}{\mathrm{StdevP}(Q)} $$
(12)
$$ \alpha =\left[\mathrm{average}\left(\frac{dQ}{dt}\right)-\mathrm{average}(Q)\right]/\mathrm{correl}\left(Q,\frac{dQ}{dt}\right)\times \frac{\mathrm{StdevP}\left(\frac{dQ}{dt}\right)}{\mathrm{StdevP}(Q)} $$
(13)
$$ b=\mathrm{StdevP}\left(\frac{dQ}{dt}\right)/\mathrm{correl}\left(Q,\frac{dQ}{dt}\right)/\mathrm{StdevP}(Q) $$
(14)

where StdevP is the standard deviation of the population.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sánchez-Murillo, R., Brooks, E.S., Elliot, W.J. et al. Baseflow recession analysis in the inland Pacific Northwest of the United States. Hydrogeol J 23, 287–303 (2015). https://doi.org/10.1007/s10040-014-1191-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10040-014-1191-4

Keywords

Navigation