Skip to main content

Advertisement

Log in

Review: Approaches to research on CO2/brine two-phase migration in saline aquifers

Analyse: Approches pour étudier la migration bi phasique de CO2/saumure dans des aquifères salins

Revisión: Enfoques para investigar la migración bifásica CO2/salmuera en acuíferos salinos

咸水含水层中CO2/卤水两相迁移的研究方法

Revisão: Abordagens para a pesquisa da migração bifásica CO2/salmoura em aquíferos salinos

  • Paper
  • Published:
Hydrogeology Journal Aims and scope Submit manuscript

Abstract

Understanding CO2/brine multiphase migration processes is critical for effectively evaluating potential storage capacity, ensuring storage security, and predicting the long-term fate of CO2 storage in saline aquifers. Success depends on the development and application of appropriate research methods. This paper accordingly reviews the progress made in research methods on CO2/brine two-phase migration. Due to intrinsic linkage between CO2 migration and trapping in saline aquifers, prediction of CO2/brine migration processes requires an accurate understanding of CO2 trapping mechanisms. Six recognized physical or geochemical mechanisms, including structural and stratigraphic trapping, residual gas trapping, hydrodynamic trapping, solubility trapping, local capillary trapping and mineral trapping, can impede or prevent CO2 migration according to different dominating variables, and consequently immobilize CO2 in brine formations at varying time and spatial scales. Laboratory experiments, field-scale monitoring and computational modeling are the main approaches in studies on CO2/brine multiphase migration. Different techniques have been designed and developed within each of these methods in terms of physical conditions and spatial scales of multiphase migration phenomena. Due to multi-scale characteristics of CO2/brine multiphase migration processes and complementary relationships among these methods and techniques, different research methods and techniques are often used in combination. Based on a systematic analysis of limitations and weaknesses, improvements are recommended which could potentially increase the accuracy, reliability and applicability of the approaches.

Résumé

Comprendre les processus de migration multiphasique du CO2/saumure est essential pour évaluer efficacement la capacité de stockage potentiel, assurer la sécurité du stockage et pour prédire le devenir à long terme du stockage du CO2 dans des aquifères salins. Le succès dépend de la mise au point et de l’application de méthodes de recherche appropriées. Cet article examine en conséquence les progrès réalisés dans les méthodes de recherche sur la migration biphasique du CO2/saumure. En raison du lien intrinsèque entre la migration et le piégeage du CO2 dans des aquifères salins, la prévision des processus de migration du CO2/saumure nécessite une compréhension précise des mécanismes de piégeage du CO2. Six mécanismes physiques ou géochimiques reconnus, y compris le piégeage structural et stratigraphique, le piégeage résiduel du gaz, le piégeage hydrodynamique, la solubilité, le piégeage capillaire local et le piégeage minéral, peuvent entraver ou empêcher la migration du CO2 en fonction de différentes variables dominantes, et par conséquence immobiliser le CO2 dans des formations de saumure à des échelles spatio-temporelles variables. Des expériences en laboratoire, le suivi à l’échelle de site et la modélisation numérique sont les principales approches utilisées dans les études de la migration multiphasique du CO2/saumure. Différentes techniques ont été conçues et développées au sein de chacun de ces méthodes en termes de conditions physiques et d’échelles spatiales pour les phénomènes de migration multiphasique. A cause des caractéristiques multi-échelles des processus de migration multiphasique du CO2/saumure et des complémentarités entre ces méthodes et techniques, différentes méthodes de recherche et techniques sont souvent utilisées de manière combinatoire. A partir d’une analyse systématique des limites et faiblesses, des améliorations sont recommandées qui pourraient potentiellement augmenter la précision, la fiabilité et l’applicabilité des approches.

Resumen

Entender los procesos de la migración multifásica CO2/salmuera es crítico para evaluar efectivamente la capacidad potencial de almacenamiento, confirmando la seguridad del almacenamiento, y prediciendo el destino a largo plazo del almacenamiento de CO2 en acuíferos salinos. El éxito depende del desarrollo y la aplicación de métodos apropiados de investigación. En ese sentido, este trabajo revisa el progreso realizado en los métodos de investigación sobre la migración bifásica CO2/salmuera. Debido al vínculo intrínseco entre la migración de CO2 y su captura en acuíferos salinos, la predicción de los procesos de migración de CO2/salmuera requiere un conocimiento exacto de los mecanismos de captura del CO2. Seis reconocidos mecanismos físicos o geoquímicos, incluyendo la captura estructural y estratigráfica, captura de gas residual, captura hidrodinámica, captura de solubilidad, captura local capilar y captura mineral pueden impedir o prevenir la migración de CO2 de acuerdo a las diferentes variables dominantes, y consecuentemente inmovilizar el CO2 en las formaciones de salmuera a distintas escalas de tiempo y espacio. Los experimentos de laboratorio, monitoreo en escala de campo y modelado computacional son los principales en los enfoques en los estudios sobre la migración multifásica de CO2/salmuera. Se han diseñado y desarrollado diferentes técnicas dentro de cada uno de estos métodos en términos de condiciones físicas y escalas espaciales de los fenómenos de migración multifásica. Debido a las características de los procesos de migración multifásica de CO2/salmuera y relaciones complementarias entre estos métodos y técnicas, diferentes métodos y técnicas de investigación son a menudo usados en combinación. Basado en un análisis sistemático de las limitaciones y debilidades, se recomiendan mejoras que podrían potencialmente incrementar la precisión, confiabilidad y aplicabilidad de los enfoques.

摘要

了解CO2/卤水多相迁移过程对有效地评估潜在存储能力、确保存储安全和预测咸水含水层内CO2存储的最终结局至关重要。成败取决于合适研究方法的开发和应用。因此,本文论述了CO2/卤水两相迁移研究方法上取得的进展。由于咸水含水层内CO2迁移和圈闭之间固有的联系,CO2/卤水迁移过程的预测需要精确了解CO2的圈闭机理。六个公认的物理和地球化学机理为结构和地层圈闭、残留气体圈闭、水动力圈闭、可溶性圈闭、局部毛细管圈闭及矿物圈闭,根据不同的主导变量,这些机理可以阻止或预防CO2迁移,从而使卤水层中的CO2在不同时间和空间尺度上停止迁移。室内试验、室外尺度的监测和概念模拟是研究CO2/卤水多相迁移的主要方法。根据多相迁移现象的物理状况和空间尺度,对这些方法中的每种方法都设计和开发了不同的技术。由于CO2/卤水多相迁移过程的多尺度特征和这些方法和技术间的互补关系,不同的研究方法和技术常常结合起来使用。在系统分析其局限性和缺点的基础上,提出了改进措施,这些改进措施能潜在地增加方法的准确性、可靠性和适用性。

Resumo

Compreender os processos de migração multifásica CO2/salmoura é fundamental para avaliar de forma eficaz a capacidade de armazenamento potencial, garantindo a segurança de armazenamento, e prevendo o destino a longo prazo do armazenamento de CO2 em aquíferos salinos. O sucesso depende do desenvolvimento e aplicação de métodos de pesquisa apropriados. Este artigo revê, consequentemente, o progresso feito em métodos de pesquisa sobre migração bifásica CO2/salmoura. Devido à ligação intrínseca entre a migração de CO2 e o aprisionamento em aquíferos salinos, a previsão de processos de migração CO2/salmoura requere uma compreensão exata dos mecanismos de aprisionamento do CO2. Seis mecanismos físicos ou geoquímicos reconhecidos, incluindo aprisionamento estrutural e estratigráfico, aprisionamento de gás residual, aprisionamento hidrodinâmico, aprisionamento por solubilidade, aprisionamento capilar local e aprisionamento mineral, podem dificultar ou impedir a migração de CO2, de acordo com diferentes variáveis dominantes e, consequentemente, imobilizar CO2 em formações salgadas a escalas temporais e espaciais variadas. Experiências laboratoriais, monitorização em escala de campo e modelação computacional são as principais abordagens em estudos sobre migração multifásica CO2/salmoura. Diferentes técnicas têm sido concebidas e desenvolvidas dentro de cada um desses métodos em termos de condições físicas e escalas espaciais de fenómenos migratórios multifásicos. Devido às caraterísticas multi-escala de processos de migração multifásica CO2/salmoura e a relações de complementaridade entre esses métodos e técnicas, diferentes métodos e técnicas de investigação são muitas vezes utilizados em combinação. Com base numa análise sistemática das limitações e fraquezas são recomendados aperfeiçoamentos, o que poderia aumentar a precisão, confiabilidade e aplicabilidade das abordagens.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Agarwal A, Parsons J (2011) Commercial structures for integrated CCS-EOR projects. Energy Procedia 4:5786–5793

    Google Scholar 

  • Ajo-Franklin JB, Peterson J, Doetsch J, Daley TM (2013) High-resolution characterization of a CO2 plume using crosswell seismic tomography: Cranfield, MS, USA. Int J Green Gas Control 18:497–509

    Google Scholar 

  • Alnes H, Eiken O, Nooner S, Sasagawa G, Stenvold T, Zumberge M (2011) Results from Sleipner gravity monitoring: updated density and temperature distribution of the CO2 plume. Energy Procedia 4:5504–5511

    Google Scholar 

  • Ameli P, Elkhoury JE, Morris JP, Detwiler RL (2014) Fracture permeability alteration due to chemical and mechanical processes: a coupled high-resolution model. Rock Mech Rock Eng. doi:10.1007/s00603-014-0575-z

    Google Scholar 

  • André L, Azaroual M, Menjoz A (2009) Numerical simulations of the thermal impact of supercritical CO2 injection on chemical reactivity in a carbonate saline reservoir. Transp Porous Media 82:247–274

    Google Scholar 

  • Arts R, Eiken O, Chadwick A, Zweigeld P, Meera L, Zinsznere B (2004) Monitoring of CO2 injected at Sleipner using time-lapse seismic data. Energy 29:1383–1392

    Google Scholar 

  • Arts RJ, Chadwick A, Eiken O, Thibeau S, Nooner S (2008) Ten years’ experience of monitoring CO2 injection in the Utsira Sand at Sleipner, offshore Norway. First Break 26:65–72

    Google Scholar 

  • Assteerawatt A, Bastian P, Bielinski A, Breiting T, Class H, Ebigbo A, Eichel H, Freiboth S, Helmig R, Kopp A, Niessner J, Ochs SO, Papafotiou A, Paul M, Sheta H, Werner D, Ölmann U (2005) MUFTE-UG: structure, applications and numerical methods. Int Groundw Model Centre Newslett 23(2)

  • Bachu S (2000) Sequestration of CO2 in geological media: criteria and approach for site selection in response to climate change. Energy Convers Manag 41:953–970

    Google Scholar 

  • Bachu S (2008) CO2 storage in geological media: role, means, status and barriers to deployment. Prog Energy Combust 34:254–273

    Google Scholar 

  • Bachu S, Adams JJ (2003) Sequestration of CO2 in geological media in response to climate change: capacity of deep saline aquifers to sequester CO2 in solution. Energy Convers Manag 44:3151–3175

    Google Scholar 

  • Balhoff MT, Thomas SG, Wheeler MF (2007a) Mortar coupling and upscaling of pore-scale models. Comput Geosci 12:15–27

    Google Scholar 

  • Balhoff MT, Thompson KE, Hjortsø M (2007b) Coupling pore-scale networks to continuum-scale models of porous media. Comput Geosci 33:393–410

    Google Scholar 

  • Bandara UC, Tartakovsky AM, Palmer BJ (2011) Pore-scale study of capillary trapping mechanism during CO2 injection in geological formations. Int J Green Gas Control 5:1566–1577

    Google Scholar 

  • Bateson L, Vellico M, Beaubien SE, Pearcea JM, Annunziatellis A, Ciotoli G, Coren F, Lombardi S, Marsh S (2008) The application of remote-sensing techniques to monitor CO2-storage sites for surface leakage: method development and testing at Latera (Italy) where naturally produced CO2 is leaking to the atmosphere. Int J Green Gas Control 2:388–400

    Google Scholar 

  • Battiato I, Tartakovsky DM (2011) Applicability regimes for macroscopic models of reactive transport in porous media. J Contam Hydrol 120–121:18–26

    Google Scholar 

  • Battiato I, Tartakovsky DM, Tartakovsky AM, Scheibe TD (2011) Hybrid models of reactive transport in porous and fractured media. Adv Water Resour 34:1140–1150

    Google Scholar 

  • Benson SM, Myer L (2002) Monitoring to ensure safe and effective geologic storage of carbon dioxide. Intergovernmental Panel on Climate Change (IPCC) Workshop on Carbon Sequestration, Regina, Saskatchewan, Canada, 18–22 November

  • Benson SM, Gasperikova E, Hoversten GM (2004) Overview of monitoring techniques and protocols for geologic storage projects. Report PH4/35, IEA Greenhouse Gas R&D Programme, Cheltenham, UK, 108 pp

  • Benson SM, Tomutsa L, Silin D, Kneafsey T, Miljkovic L (2006) Corescale and porescale studies of carbon dioxide migration in saline formations. Proceedings of 8th International Conference on Greenhouse Gas Control Technologies (GHGT8), IEA Greenhouse Gas Programme, Trondheim, Norway, 19–22 June 2006

  • Bickle M, Chadwick A, Huppert HE, Hallworth M, Lyle S (2007) Modelling carbon dioxide accumulation at Sleipner: implications for underground carbon storage. Earth Planet Sci Lett 255:164–176

    Google Scholar 

  • Birkholzer J, Zhou Q, Tsang C (2009) Large-scale impact of CO2 storage in deep saline aquifers: a sensitivity study on pressure response in stratified systems. Int J Green Gas Control 3:181–194

    Google Scholar 

  • Bissell RC, Vasco DW, Atbi M, Hamdani M, Okwelegbe M, Goldwater MH (2011) A full field simulation of the in Salah gas production and CO2 storage project using a coupled geo-mechanical and thermal fluid flow simulator. Energy Procedia 4:3290–3297

    Google Scholar 

  • Blunt MJ, Jackson MD, Piri M, Valvatne PH (2002) Detailed physics, predictive capabilities and macroscopic consequences for pore-network models of multi-phase flow. Adv Water Resour 25:1069–1089

    Google Scholar 

  • Breen SJ, Carrigan CR, LaBrecque DJ, Detwiler RL (2012) Bench-scale experiments to evaluate electrical resistivity tomography as a monitoring tool for geologic CO2 sequestration. Int J Green Gas Control 9:484–494

    Google Scholar 

  • Cahill AG, Marker P, Jakobsen R (2014) Hydrogeochemical and mineralogical effects of sustained CO2 contamination in a shallow sandy aquifer: a field-scale controlled release experiment. Water Resour Res 50(2):1735–1755

    Google Scholar 

  • Carrigan CR, Ramirez AL, Newmark RL, Aines R, Friedmann SJ (2009) Application of ERT for tracking CO2 plume growth and movement at the SECARB Cranfield site. 8th Annual Conference on Carbon Capture & Sequestration, Pittsburgh, PA, 4–7 May 2009

  • Cavanagh A, Ringrose P (2011) Simulation of CO2 distribution at the In Salah storage site using high-resolution field-scale models. Energy Procedia 4:3730–3737

    Google Scholar 

  • Celia MA, Rajaram H, Ferrand LA (1993) A multi-scale computational model for multi-phase flow in porous media. Adv Water Resour 16:81–92

    Google Scholar 

  • Celia MA, Nordbotten JM, Court B, Dobossy M, Bachu S (2011) Field-scale application of a semi-analytical model for estimation of CO2 and brine leakage along old wells. Int J Green Gas Control 5:257–269

    Google Scholar 

  • Chadwick RA, Noy DJ (2010) History-matching flow simulations and time-lapse seismic data from the Sleipner CO2 plume. Pet Geol Conf Ser 7:1171–1182

    Google Scholar 

  • Chadwick RA, Zweigel P, Gregersen U, Kirby GA, Holloway S, Johannessen PN (2002) Geological characterization of CO2 storage sites: lessons from Sleipner, Northern North Sea. 6th Int. Conf. on Greenhouse Gas Control Technologies (GHGT-6), Kyoto, Japan, 1–4 October 2002

  • Chadwick RA, Arts R, Eiken O, Kirby GA, Lindeberg E, Zweigel P (2004) 4D seismic imaging of an injected CO2 plume at the Sleipner Field, central North Sea. In: Davies RJ, Cartwright JA, Stewart SA, et al (eds) 3-D seismic technology: application to the exploration of sedimentary basins. Geol Soc Lond Mem 29:305–314

  • Chadwick RA, Arts R, Bentham M, Eiken O, Holloway S, Kirby GA, Pearce JM, Williamson JP, Zweigel P (2009a) Review of monitoring issues and technologies associated with the long-term underground storage of carbon dioxide. Geol Soc Lond Spec Publ 313:257–275

    Google Scholar 

  • Chadwick RA, Noy D, Arts R, Eiken O (2009b) Latest time-lapse seismic data from Sleipner yield new insights into CO2 plume development. Energy Procedia 1:2103–2110

    Google Scholar 

  • Chadwick A, Williams G, Delepine N, Clochard V, Labat K, Sturton S, Buddensiek M, Dillen M, Nickel M, Lima A, Arts R, Neele F, Rossi G (2010) Quantitative analysis of time-lapse seismic monitoring at the Sleipner CO2 storage operation. Lead Edge 29:170–177

    Google Scholar 

  • Chasset C, Jarsjö J, Erlström M, Cvetkovic V, Destouni G (2011) Scenario simulations of CO2 injection feasibility, plume migration and storage in a saline aquifer, Scania, Sweden. Int J Green Gas Control 5:1303–1318

    Google Scholar 

  • Chen S, Doolen GD (1998) Lattice Boltzmann method for fluid flows. Annu Rev Fluid Mech 30:329–364

    Google Scholar 

  • Chen C, Zhang D (2010) Pore-scale simulation of density-driven convection in fractured porous media during geological CO2 sequestration. Water Resour Res 46, W11527

    Google Scholar 

  • Chu Y, Werth CJ, Valocchi AJ, Yoon H, Webb AG (2004) Magnetic resonance imaging of nonaqueous phase liquid during soil vapor extraction in heterogeneous porous media. J Contam Hydrol 73(1):15–37

    Google Scholar 

  • Chu J, Engquist B, Prodanović M, Tsai R (2012) A multiscale method coupling network and continuum models in porous media I: steady-state single phase flow. Multiscale Model Simul 10:515–549

    Google Scholar 

  • Cinar Y, Riaz A, Tchelepi HA (2009) Experimental study of CO2 injection into saline formations. SPE J 14:588–594

    Google Scholar 

  • Class H, Ebigbo A, Helmig R, Dahle HK, Nordbotten JM, Celia MA, Audigane P, Darcis M, Ennis-King J, Fan YQ, Flemisch B, Gasda SE, Jin M, Krug S, Labregere D, Beni AN, Pawar RJ, Sbai A, Thomas SG, Trenty L, Wei LL (2009) A benchmark study on problems related to CO2 storage in geologic formations. Comput Geosci 13(4):409–434

    Google Scholar 

  • Computer Modelling Group (2013) GEM product overview. http://www.cmgl.ca/uploads/files/pdf/SOFTWARE/2013%20Product%20Sheets/13-GE-P1_GEM_Product_Sheet_July2013.pdf. Accessed 24 July 2014

  • Credoz A, Bildstein O, Jullien M, Raynal J, Pétronin JC, Lillo M, Pozo C, Geniaut G (2009) Experimental and modeling study of geochemical reactivity between clayey caprocks and CO2 in geological storage conditions. Energy Procedia 1(1):3445–3452

    Google Scholar 

  • Daley TM, Solbau RD, Ajo-Franklin JB, Benson SM (2007) Continuous active-source seismic monitoring of CO2 injection in a brine aquifer. Geophysics 72(5):57–61

    Google Scholar 

  • Daley TM, Myer LR, Peterson JE, Majer EL, Hoversten GM (2008) Time-lapse crosswell seismic and VSP monitoring of injected CO2 in a brine aquifer. Environ Geol 54(8):1657–1665

    Google Scholar 

  • De Silva PNK, Ranjith PG (2012) A study of methodologies for CO2 storage capacity estimation of saline aquifers. Fuel 93:13–27

    Google Scholar 

  • Deley T (2012) Cranfield geophysical monitoring status and results. Secarb Seventh Annual Stakeholders’ Briefing, Mobile, AL, 7–8 May 2008

  • Dillen M, Lindeberg E, Aagaard P, Aker E, Sæther OM, Johansen H, Lien M, Hatzignatiou DG, Golmen L, Hellevang J (2009) A field laboratory for monitoring CO2 leakage. Energy Procedia 1:2397–2404

    Google Scholar 

  • Doughty C (2010) Investigation of CO2 plume behavior for a large-scale pilot test of geologic carbon storage in a saline formation. Transp Porous Media 82:49–76

    Google Scholar 

  • Doughty C, Freifeld B, Trautz R (2008) Site characterization for CO2 geologic storage and vice versa: the Frio Brine Pilot, Texas, USA as a case study. Environ Geol 54:1635–1656

    Google Scholar 

  • DTI (2005) Monitoring technologies for the geological storage of CO2. Technology status report TSR025, Cleaner Fossil Fuels Program, Dept. of Trade and Industry, London, 28 pp

  • E W, Engquist B, Huang Z (2003) Heterogeneous multiscale method: a general methodology for multiscale modeling. Phys Rev B 67:092101

  • Eiken O, Ringrose P, Hermanrud C, Nazarian B, Torp TA, Høier L (2011) Lessons learned from 14 years of CCS operations: Sleipner, In Salah and Snøhvit. Energy Procedia 4:5541–5548

    Google Scholar 

  • Elkhoury J, Ameli P, Detwiler R (2013) Dissolution and deformation in fractured carbonates caused by flow of CO2-rich brine under reservoir conditions. Int J Green Gas Control 16S:203–215

    Google Scholar 

  • Ellis JS, Bazylak A (2012) Dynamic pore network model of surface heterogeneity in brine-filled porous media for carbon sequestration. Phys Chem Chem Phys 14:8382–8390

    Google Scholar 

  • Escartin J, Garcia D, Bravo E (2010) Computer simulations using implicit Lagrangian hydrodynamics in 3D. A: IX Reunión de la Sociedad Española de Astronomia, “Highlights of Spanish Astrophysics VI”, Madrid, 13–17 September. http://upcommons.upc.edu/e-prints/bitstream/2117/15372/1/F-escartinja.pdf. Accessed 24 July 2014

  • Flemisch B, Fritz J, Helmig R, Niessner J, Wohlmuth B (2007) DUMUX: a multi-scale multi-physics toolbox for flow and transport processes in porous media. Multiscale Computational Methods for Solids and Fluids ECCOMAS Thematic Conference, Cachan, France, 28–30 November

  • Flett MA, Gurton RM, Taggart IJ (2005) Heterogeneous saline formations: long-term benefits for geosequestration of greenhouse gases. In: Rubin ES, Keith DW, Gilboy CF (eds) Greenhouse gas control technologies, vol 1. Proc. of the 7th Int. Conf. on Greenhouse Gas Control Technologies, Alexandria, VA, May 2005, pp 501–509

  • Freifeld BM (2009) The U-tube: a new paradigm in borehole fluid sampling. Sci Drill 8:41–45

    Google Scholar 

  • Gasperikova E, Hoversten GM (2008) Gravity monitoring of CO2 movement during sequestration: model studies. Geophysics 73(6):WA105–WA112

    Google Scholar 

  • Gerst J (2009) MRCSP Michigan Basin test site. Regional Carbon Sequestration Partnerships Annual Review Meeting, Pittsburgh, PA, 16–19 November 2009

  • Ghanbari S, Al-Zaabi Y, Pickup GE, Mackay E, Gozalpour F, Todd AC (2006) Simulation of CO2 storage in saline aquifers. Chem Eng Res Des 84(9):764–775

    Google Scholar 

  • Ghomian Y, Pope GA, Sepehrnoori K (2008) Reservoir simulation of CO2 sequestration pilot in Frio Brine formation, USA Gulf Coast. Energy 33:1055–1067

    Google Scholar 

  • Girard JF, Coppo N, Rohmer J, Bourgeois B, Naudet V, Schmidt-Hattenberger C (2011) Time-lapse CSEM monitoring of the Ketzin (Germany) CO2 injection using 2 × MAM configuration. Energy Procedia 4:3322–3329

    Google Scholar 

  • Godec M, Kuuskraa V, van Leeuwen T, Melzer LS, Wildgust N (2011) CO2 storage in depleted oil fields: the worldwide potential for carbon dioxide enhanced oil recovery. Energy Procedia 4:2162–2169

    Google Scholar 

  • Gunde AC, Bera B, Mitra SK (2010) Investigation of water and CO2 (carbon dioxide) flooding using micro-CT (micro-computed tomography) images of Berea sandstone core using finite element simulations. Energy 35:5209–5216

    Google Scholar 

  • Gunter WD, Perkins EH, McCann TJ (1993) Aquifer disposal of CO2-rich gases: reaction design for added capacity. Energy Convers Manag 34:941–948

    Google Scholar 

  • Gunter WD, Wiwchar B, Perkins EH (1997) Aquifer disposal of CO2-rich greenhouse gases: extension of the time scale of experiment for CO2-sequestration reactions by geochemical modelling. Miner Petrol 59:121–140

    Google Scholar 

  • Gupta N (2008) Michigan Basin, MRCSP State-Charlton 30/31 field test site. Regional Carbon Sequestration Partnerships Initiative Review Meeting, Pittsburgh, PA, 6–8 October 2008

  • Gupta N, Ball D, Sminchak J, Gerst J, Kelley M, Place M, Bradbury J, Cumming L (2011) Geologic storage field tests in multiple basins in Midwestern USA: lessons learned and implications for commercial deployment. Energy Procedia 4:5565–5572

    Google Scholar 

  • Hansen O, Eiken O, Østmo S et al (2011) Monitoring CO2 injection into a fluvial brine-filled sandstone formation at the Snøhvit field, Barents Sea. SEG Annual Meeting, vol 1, San Antonio, TX, 18–23 September 2011, pp 4092–4096

  • Hayek M, Mouche E, Mügler C (2009) Modeling vertical stratification of CO2 injected into a deep layered aquifer. Adv Water Resour 32:450–462

    Google Scholar 

  • Henninges J, Liebscher A, Bannach A, Brandt W, Hurter S, Köhler S, Möller F (2011) P-T-ρ and two-phase fluid conditions with inverted density profile in observation wells at the CO2 storage site at Ketzin (Germany). Energy Procedia 4:6085–6090

    Google Scholar 

  • Hesse MA, Tchelepi HA, Cantwel BJ, Orr FM (2007) Gravity currents in horizontal porous layers: transition from early to late self-similarity. J Fluid Mech 577:363–383

    Google Scholar 

  • Hesse MA, Orr FM, Tchelepi HA (2008) Gravity currents with residual trapping. J Fluid Mech 611:35–60

    Google Scholar 

  • Hitchon B, Gunter WD, Gentzis T, Bailey RT (1999) Sedimentary basins and greenhouse gases: a serendipitous association. Energy Convers Manag 40:835–843

    Google Scholar 

  • Hovorka SD, Meckel TA, Trevino RH, Lu JM, Nicot JP, Choi JW, Freeman D, Cook P, Daley TM, Ajo-Franklin JB, Freifeild BM, Doughty C, Carrigan CR, Brecque DL, Kharaka YK, Thordsen JJ, Phelps TJ, Yang CB, Romanak KD, Zhang TW, Holt RM, Lindler JS, Butsch RJ (2011) Monitoring a large volume CO2 injection: year two results from SECARB project at Denbury’s Cranfield, Mississippi, USA. Energy Procedia 4:3478–3485

    Google Scholar 

  • Inamuro T, Ogata T, Tajima S, Konishi N (2004) A lattice Boltzmann method for incompressible two-phase flows with large density differences. J Comput Phys 198:628–644

    Google Scholar 

  • IPCC (2007) Climate change 2007: synthesis report. In: Pachauri RK, Reisinger A (eds) Contribution of Working Groups I, II and III to the fourth assessment report of the Intergovernmental Panel on Climate Change. IPCC, Geneva, 104 pp

    Google Scholar 

  • IPCC et al (2005) IPCC special report on carbon dioxide capture and storage. In: Metz B, Davidson O, de Coninck HC (eds) Prepared by Working Group III of the Intergovernmental Panel on Climate Change. Cambridge University Press, New York, 442 pp

    Google Scholar 

  • Ivandic M, Yang C, Lüth S, Cosma C, Juhlin C (2012) Time-lapse analysis of sparse 3D seismic data from the CO2 storage pilot site at Ketzin, Germany. J Appl Geophys 84:14–28

    Google Scholar 

  • Jiang Y (2007) Techniques for modeling complex reservoirs and advanced wells. PhD Thesis, Stanford University, USA

  • Jiang X (2011) A review of physical modelling and numerical simulation of long-term geological storage of CO2. Appl Energy 88:3557–3566

    Google Scholar 

  • Jiao Z, Surdam RC, Zhou L, Stauffer PH, Luo T (2011) A feasibility study of geological CO2 sequestration in the Ordos Basin, China. Energy Procedia 4:5982–5989

    Google Scholar 

  • Jones DG, Lister TR, Smith DJ, West JM, Coombs P, Gadalia A, Brach M, Annunziatellis A, Lombardi S (2011) In Salah gas CO2 storage JIP: surface gas and biological monitoring. Energy Procedia 4:3566–3573

    Google Scholar 

  • Juanes R, Spiteri EJ, Orr FM, Blunt MJ (2006) Impact of relative permeability hysteresis on geological CO2 storage. Water Resour Res 42, W12418

    Google Scholar 

  • Juanes R, MacMinn CW, Szulczewski ML (2009) The footprint of the CO2 plume during carbon dioxide storage in saline aquifers: storage efficiency for capillary trapping at the basin scale. Transp Porous Media 82:19–30

    Google Scholar 

  • Kang Q, Tsimpanogiannis IN, Zhang D, Lichtner PC (2005) Numerical modeling of pore-scale phenomena during CO2 sequestration in oceanic sediments. Fuel Process Technol 86:1647–1665

    Google Scholar 

  • Kang Q, Lichtner PC, Viswanathan HS, Abdel-Fattah AI (2010) Pore scale modeling of reactive transport involved in geologic CO2 sequestration. Transp Porous Media 82:197–213

    Google Scholar 

  • Kaszuba JP, Janecky DR, Snow MG (2005) Experimental evaluation of mixed fluid reactions between supercritical carbon dioxide and NaCl brine: relevance to the integrity of a geologic carbon repository. Chem Geol 217:277–293

    Google Scholar 

  • Kelley ME (2009) Phase II CO2 sequestration test cincinnati arch MRCSP site. Regional Carbon Sequestration Partnerships Annual Review Meeting, Pittsburgh, PA, 16–19 November 2009

  • Kharaka YK, Thordsen JJ, Hovorka SD, Seay Nance H, Cole DR, Phelps TJ, Knauss KG (2009) Potential environmental issues of CO2 storage in deep saline aquifers: geochemical results from the Frio-I Brine Pilot test, Texas, USA. Appl Geochem 24:1106–1112

    Google Scholar 

  • Kiessling D, Schmidt-Hattenberger C, Schuett H, Schilling F, Krueger K, Schoebel B, Danckwardt E, Kummerow J, the CO2SINK Group (2010) Geoelectrical methods for monitoring geological CO2 storage: first results from cross-hole and surface-downhole measurements from the CO2SINK test site at Ketzin (Germany). Int J Green Gas Control 4:816–826

    Google Scholar 

  • Kneafsey TJ, Pruess K (2010) Laboratory flow experiments for visualizing carbon dioxide-induced, density-driven brine convection. Transp Porous Media 82:123–139

    Google Scholar 

  • Kohlmeier M, Maßmann J, Wulkau M, Ziefle G (2009) RockFlow 5 user’s manual. http://www.rockflow.uni-hannover.de/fileadmin/rockflow/download/manual/rfman51.pdf. Accessed 24 July 2014

  • Koperna GJ, Riestenberg D, Kuuskraa V, Esposito R, Rhudy R (2008) SECARB’s Mississippi test site: a field project update. 7th Carbon Capture and Sequestration Conference, Pittsburgh, PA, 5–8 May 2008

  • Krause MH, Perrin JC, Benson SM (2011a) Recent progress in predicting permeability distributions for history matching core flooding experiments. Energy Procedia 4:4354–4361

    Google Scholar 

  • Krause MH, Perrin JC, Benson SM (2011b) Modeling permeability distributions in a sandstone core for history matching coreflood experiments. SPE J 16:768–777

    Google Scholar 

  • Krevor SCM, Pini R, Li B, Benson SM (2011) Capillary heterogeneity trapping of CO2 in a sandstone rock at reservoir conditions. Geophys Res Lett 38(15), L15401

    Google Scholar 

  • Krevor SCM, Pini R, Zuo L, Benson SM (2012) Relative permeability and trapping of CO2 and water in sandstone rocks at reservoir conditions. Water Resour Res 48(2), W02532

    Google Scholar 

  • Kumar A, Noh M, Pope GA, Sepehrnoori K, Bryant S, Lake LW (2005) Reservoir simulation of CO2 storage in deep saline aquifers. SPE J 10:336–348

    Google Scholar 

  • Kuo CW, Perrin JC, Benson SM (2010) Effect of gravity, flow rate and small scale heterogeneity on multi-phase flow of CO2 and brine. SPE Western Regional Meeting, Anaheim, CA, USA, 27–29 May 2010

  • Kuo CW, Perrin JC, Benson SM (2011) Simulation studies of effect of flow rate and small scale heterogeneity on multi-phase flow of CO2 and brine. Energy Procedia 4:4516–4523

    Google Scholar 

  • Labitzke T, Bergmann P, Kießling D, Schmidt-Hattenberger C (2012) 3D surface-downhole electrical resistivity tomography data sets of the Ketzin CO2 storage pilot from the CO2SINK project phase. Scientific technical report STR 12/05-Data, Deutsches GeoForschungsZentrum GFZ, Berlin, 24 pp

  • Lackner KS (2003) Climate change: a guide to CO2 sequestration. Science 300:1677–1678

    Google Scholar 

  • Le Gallo Y, Trenty L, Michel A, Vidal-Gilbert S, Parra T (2006) Thermo-hydro-chemical performance assessment of CO2 storage in saline aquifers. CO2SC Symposium, Lawrence Berkeley National Laboratory, Berkeley, California, 20–22 March 2006

  • Lee T, Lin C (2005) A stable discretization of the lattice Boltzmann equation for simulation of incompressible two-phase flows at high density ratio. J Comput Phys 206:16–47

    Google Scholar 

  • Lemieux J (2011) Review: The potential impact of underground geological storage of carbon dioxide in deep saline aquifers on shallow groundwater resources. Hydrogeol J 19:757–778

    Google Scholar 

  • Lengler U, De Lucia M, Kühn M (2010) The impact of heterogeneity on the distribution of CO2: numerical simulation of CO2 storage at Ketzin. Int J Green Gas Control 4:1016–1025

    Google Scholar 

  • Li H, Wilhelmsen Ø, Lv Y, Wang W, Yan J (2011) Viscosities, thermal conductivities and diffusion coefficients of CO2 mixtures: review of experimental data and theoretical models. Int J Green Gas Control 5:1119–1139

    Google Scholar 

  • Litynski J (2011) The U.S. DOE Sequestration R&D Program: developing MVAA for groundwater protection. Ground Water Protection Council Annual Forum, Atlanta, GA, 24–28 September 2011

  • Liu G (2012) Greenhouse gases: capturing, utilization and reduction. InTech, Rijeka, Croatia

    Google Scholar 

  • Liu H, Valocchi AJ, Kang Q, Werth C (2013) Pore-scale simulations of gas displacing liquid in a homogeneous pore network using the lattice Boltzmann method. Transp Porous Media 99(3):555–580

    Google Scholar 

  • Lochbuhler T, Breen SJ, Detwiler RL, Vrugt JA, Linde N (2014) Probabilistic electrical resistivity tomography of a CO2 sequestration analog. J Appl Geophys 107:80–92

    Google Scholar 

  • Lopez O, Idowu N, Mock A, Rueslåtten H, Boassen T, Leary S, Ringrose P (2011) Pore-scale modelling of CO2-brine flow properties at In Salah, Algeria. Energy Procedia 4:3762–3769

    Google Scholar 

  • Lorber A, Goldbart Z (1985) Convenient method for the determination of trace elements in solid sample using an inductively coupled plasma. Analyst 110:155–157

    Google Scholar 

  • Lüth S, Bergmann P, Cosma C, Enescu N, Giese R, Götz J, Ivanova A, Juhlin C, Kashubin A, Yang C, Zhang F (2011) Time-lapse seismic surface and down-hole measurements for monitoring CO2 storage in the CO2SINK project (Ketzin, Germany). Energy Procedia 4:3435–3442

    Google Scholar 

  • Madsen R, Xu L, Claassen B, McDermitt D (2009) Surface monitoring method for carbon capture and storage projects. Energy Procedia 1(1):2161–2168

    Google Scholar 

  • Martens S, Liebscher A, Möller F, Würdemann H, Schilling F, Kühn M, Ketzin Group (2011) Progress report on the first European on-shore CO2 storage site at Ketzin (Germany): second year of injection. Energy Procedia 4:3246–3253

    Google Scholar 

  • Mathieson A, Wright I, Roberts D, Ringrose P (2009) Satellite imaging to monitor CO2 movement at Krechba, Algeria. Energy Procedia 1:2201–2209

    Google Scholar 

  • Mathieson A, Midgely J, Wright I, Saoula N, Ringrose P (2011) In Salah CO2 storage JIP: CO2 sequestration monitoring and verification technologies applied at Krechba, Algeria. Energy Procedia 4:3596–3603

    Google Scholar 

  • Meakin P, Tartakovsky AM (2009) Modeling and simulation of pore-scale multi-phase fluid flow and reactive transport in fractured and porous media. Rev Geophys 47, RG3002

    Google Scholar 

  • Michael K, Arnot M, Cook P, Ennis-King J, Funnell R, Kaldi J, Kirste D, Paterson L (2009) CO2 storage in saline aquifers I: current state of scientific knowledge. Energy Procedia 1:3197–3204

    Google Scholar 

  • Michael K, Golab A, Shulakova V, Ennis-King J, Allinson G, Sharma S, Aiken T (2010) Geological storage of CO2 in saline aquifers: a review of the experience from existing storage operations. Int J Green Gas Control 4(4):659–667

    Google Scholar 

  • Mito S, Xue Z (2011) Post-injection monitoring of stored CO2 at the Nagaoka pilot site: 5 years time-lapse well logging results. Energy Procedia 4:3284–3289

    Google Scholar 

  • Mito S, Xue Z, Ohsumi T (2008) Case study of geochemical reactions at the Nagaoka CO2 injection site, Japan. Int J Green Gas Control 2:309–318

    Google Scholar 

  • Mitrović M, Malone A (2011) Carbon capture and storage (CCS) demonstration projects in Canada. Energy Procedia 4:5685–5691

    Google Scholar 

  • Monaghan JJ (2005) Smoothed particle hydrodynamics. Rep Prog Phys 68:1703–1759

    Google Scholar 

  • Montemagno CD, Gray WG (1995) Photoluminescent volumetric imaging: a technique for the exploration of multi-phase flow and transport in porous media. Geophys Res Lett 22:425–428

    Google Scholar 

  • Morozova D, Wandrey M, Alawi M, Zimmer M, Vieth A, Zettlitzer M, Würdemann H (2010) Monitoring of the microbial community composition in saline aquifers during CO2 storage by fluorescence in situ hybridisation. Int J Green Gas Control 4(6):981–989

    Google Scholar 

  • Morozova D, Zettlitzer M, Let D, Würdemann H, the CO2SINK group (2011) Monitoring of the microbial community composition in deep subsurface saline aquifers during CO2 storage in Ketzin, Germany. Energy Procedia 4:4362–4370

    Google Scholar 

  • Müller N, Ramakrishnan TS, Boyd A, Sakruai S (2007) Time-lapse carbon dioxide monitoring with pulsed neutron logging. Int J Green Gas Control 1(4):456–472

    Google Scholar 

  • Mur A, Purcell C, Soong Y, Crandall D, McLendon TR, Haljasma IV, Warzinski R, Kutchko B, Kennedy S, Harbert W (2011) Integration of core sample velocity measurements into a 4D seismic survey and analysis of SEM and CT images to obtain pore scale properties. Energy Procedia 4:3676–3683

    Google Scholar 

  • Niemet MR, Selker JS (2001) A new method for quantification of liquid saturation in 2D translucent porous media systems using light transmission. Adv Water Resour 24(6):651–666

    Google Scholar 

  • Nooner S, Zumberge M, Eiken O, Stenvold T, Thibeau S (2006) Constraining the density of CO2 within the Utsira formation using time-lapse gravity measurements. Proceedings of the 8th International Conference on Greenhouse Gas Control Technologies, Trondheim, Norway, 19–22 June 2006

  • Nooner SL, Eiken O, Hermanrud C, Sasagawa GS, Stenvold T, Zumberge MA (2007) Constraints on the in situ density of CO2 within the Utsira formation from time-lapse seafloor gravity measurements. Int J Green Gas Control 1(2):198–214

    Google Scholar 

  • Nordbotten JM, Celia MA (2006) An improved analytical solution for interface upconing around a well. Water Resour Res 42, W08433

    Google Scholar 

  • Nordbotten JM, Celia MA, Bachu S, Dahle HK (2005a) Semianalytical solution for CO2 leakage through an abandoned well. Environ Sci Technol 39:602–611

    Google Scholar 

  • Nordbotten JM, Celia MA, Bachu S (2005b) Injection and storage of CO2 in deep saline aquifers: analytical solution for CO2 plume evolution during injection. Transp Porous Media 58:339–360

    Google Scholar 

  • Okwen RT, Stewart MT, Cunningham JA (2010) Analytical solution for estimating storage efficiency of geologic sequestration of CO2. Int J Green Gas Control 4:102–107

    Google Scholar 

  • Oldenburg CM, Lewicki JL, Hepple RP (2003) Near-surface monitoring strategies for geologic carbon dioxide storage verification. LBNL-54089, Lawrence Berkeley National Laboratory, Berkeley, CA

  • Oldenburg CM, Stevens SH, Benson SM (2004) Economic feasibility of carbon sequestration with enhanced gas recovery (CSEGR). Energy 29:1413–1422

    Google Scholar 

  • Øren PE, Bakke S (2003) Reconstruction of Berea sandstone and pore-scale modelling of wettability effects. J Petrol Sci Eng 39:177–199

    Google Scholar 

  • Ozdemir E (2009) Modeling of coal bed methane (CBM) production and CO2 sequestration in coal seams. Int J Coal Geol 77:145–162

    Google Scholar 

  • Pan C, Hilpert M, Miller CT (2004) Lattice-Boltzmann simulation of two-phase flow in porous media. Water Resour Res 40, W01501

    Google Scholar 

  • Pape H, Clauser C, Iffland J (1999) Permeability prediction based on fractal pore-space geometry. Geophysics 64(5):1447–1460

    Google Scholar 

  • Park J, Viken I, Bjørnarå TI, Aker E (2011) CSEM data analysis for Sleipner CO2 storage. 6th Trondheim CCS Conference, Trondheim, Norway, 14–16 June 2011

  • Parmigiani A, Huber C, Bachmann O, Chopard B (2011) Pore-scale mass and reactant transport in multi-phase porous media flows. J Fluid Mech 686:40–76

    Google Scholar 

  • Perrin JC, Benson SM (2010) An experimental study on the influence of sub-core scale heterogeneities on CO2 distribution in reservoir rocks. Transp Porous Media 82:93–109

    Google Scholar 

  • Perrin JC, Krause M, Kuo CW, Miljkovic L, Charoba E, Benson SM (2009) Core-scale experimental study of relative permeability properties of CO2 and brine in reservoir rocks. Energy Procedia 1:3515–3522

    Google Scholar 

  • Perrin JC, Falta RW, Krevor S, Zuo L, Ellison K, Benson SM (2011) Laboratory experiments on core-scale behavior of CO2 exolved from CO2-saturated brine. Energy Procedia 4:3210–3215

    Google Scholar 

  • Pini R, Krevor S, Benson SM (2012) Capillary pressure and heterogeneity for the CO2/water system in sandstone rocks at reservoir conditions. Adv Water Resour 38:48–59

    Google Scholar 

  • Pires JCM, Martins FG, Alvim-Ferraz MCM, Simões M (2011) Recent developments on carbon capture and storage: an overview. Chem Eng Res Des 89:1446–1460

    Google Scholar 

  • Porter ML, Coon ET, Kang Q, Moulton JD, Carey JW (2012) Multicomponent interparticle-potential lattice Boltzmann model for fluids with large viscosity ratios. Phys Rev E 86(3):036701

    Google Scholar 

  • Pruess K, Oldenburg CM, Moridis GJ (1999) TOUGH2 user’s guide, version 2.0. LBNL-43134, Lawrence Berkeley National Laboratory Report, Berkeley, CA

  • Pruess K, García J, Kovscek T, Oldenburg C, Rutqvist J, Steefel C, Xu T (2004) Code intercomparison builds confidence in numerical simulation models for geologic disposal of CO2. Energy 29:1431–1444

    Google Scholar 

  • Ramstad T, Idowu N, Nardi C, Øren P (2012) Relative permeability calculations from two-phase flow simulations directly on digital images of porous rocks. Transp Porous Media 94(2):487–504

    Google Scholar 

  • Richard HW (2006) Dawsonite cement in the Triassic Lam Formation, Shabwa Basin, Yemen: a natural analogue for a potential mineral product of subsurface CO2 storage for greenhouse gas reduction. Mar Petrol Geol 23:61–77

    Google Scholar 

  • Ringrose P, Atbi M, Mason D, Espinassous M, Myhrer Ø, Iding M, Mathieson A, Wright I (2009) Plume development around well KB-502 at the In Salah CO2 storage site. First Break 27:85–89

    Google Scholar 

  • Romanak KD, Bennett PC, Yang C, Hovorka SD (2012) Process-based approach to CO2 leakage detection by vadose zone gas monitoring at geologic CO2 sequestration sites. Geophys Res Lett 39, L15405

    Google Scholar 

  • Rutqvist J (2011) Status of the TOUGH-FLAC simulator and recent applications related to coupled fluid flow and crustal deformations. Comput Geosci 37:739–750

    Google Scholar 

  • Ryan EM, Tartakovsky AM (2011) A hybrid micro-scale model for transport in connected macro-pores in porous media. J Contam Hydrol 126:61–71

    Google Scholar 

  • Ryoji S, Thomas LD (2000) Experimental study on water–rock interactions during CO2 flooding in the Tensleep Formation, Wyoming, USA. Appl Geochem 15:265–279

    Google Scholar 

  • Saadatpoor E, Bryant SL, Sepehrnoori K (2009) New trapping mechanism in carbon sequestration. Transp Porous Media 82:3–17

    Google Scholar 

  • Saito H, Nobuoka D, Azuma H, Xue Z, Tanase D (2006) Time-lapse crosswell seismic tomography for monitoring injected CO2 in an onshore aquifer, Nagaoka, Japan. Explor Geophys 37:30–36

    Google Scholar 

  • Saripalli P, McGrail BP (2002) Semi-analytical approaches to modeling deep well injection of CO2 for geological sequestration. Energy Convers Manag 43:185–198

    Google Scholar 

  • Sato K, Mito S, Horie T, Ohkuma H, Saito H, Watanabe J, Yoshimura T (2011) Monitoring and simulation studies for assessing macro- and meso-scale migration of CO2 sequestered in an onshore aquifer: experiences from the Nagaoka pilot site, Japan. Int J Green Gas Control 5:125–137

    Google Scholar 

  • Sbai MA (2007) A double porosity–double permeability model of the Bouillante geothermal production field (Guadeloupe). Technical Report RP-55418-FR, BRGM, Orleans, France

  • Schlumberger (2008) Schlumberger FrontSim technical description. Schlumberger, La Defense, France

    Google Scholar 

  • Schnaar G, Digiulio DC (2009) Computational modeling of the geologic sequestration of carbon dioxide. Vadose Zone J 8(2):389–403

    Google Scholar 

  • Shi JQ, Xue Z, Durucan S (2009) History matching of CO2 core flooding CT scan saturation profiles with porosity dependent capillary pressure. Energy Procedia 1:3205–3211

    Google Scholar 

  • Shi JQ, Xue Z, Durucan S (2011a) Supercritical CO2 core flooding and imbibition in Berea sandstone: CT imaging and numerical simulation. Energy Procedia 4:5001–5008

    Google Scholar 

  • Shi JQ, Xue Z, Durucan S (2011b) Supercritical CO2 core flooding and imbibition in Tako sandstone-influence of sub-core scale heterogeneity. Int J Green Gas Control 5:75–87

    Google Scholar 

  • Shukla R, Ranjith P, Haque A, Choi X (2010) A review of studies on CO2 sequestration and caprock integrity. Fuel 89:2651–2664

    Google Scholar 

  • Silin D, Patzek TW, Benson SM (2009) A one-dimensional model of vertical gas plume migration through a heterogeneous porous medium. Int J Green Gas Control 3:300–310

    Google Scholar 

  • Silin D, Tomutsa L, Benson S, Patzek T (2011) Microtomography and pore-scale modeling of two-phase fluid distribution. Transp Porous Media 86:495–515

    Google Scholar 

  • Sminchak J, Gupta N, Gerst J (2009) Well test results and reservoir performance for a carbon dioxide injection test in the Bass Islands Dolomite in the Michigan Basin. Environ Geosci 16:153–162

    Google Scholar 

  • Strazisar NR, Wells AW, Diehl JR, Hammack RW, Veloski GA (2009) Near-surface monitoring for the ZERT shallow CO2 injection project. Int J Green Gas Control 3:736–744

    Google Scholar 

  • Suekane T, Soukawa S, Iwatani S, Tsushima S, Hirai S (2005) Behavior of supercritical CO2 injected into porous media containing water. Energy 30:2370–2382

    Google Scholar 

  • Suekane T, Zhou N, Hosokawa T, Matsumoto T (2009) Direct observation of trapped gas bubbles by capillarity in sandy porous media. Transp Porous Media 82:111–122

    Google Scholar 

  • Sun T, Mehmani Y, Balhoff MT (2012) Hybrid multiscale modeling through direct substitution of pore-scale models into near-well reservoir simulators. Energy Fuel 26:5828–5836

    Google Scholar 

  • Surridge AD, Cloete M (2009) Carbon capture and storage in South Africa. Energy Procedia 1:2741–2744

    Google Scholar 

  • Tartakovsky A, Meakin P (2005) Modeling of surface tension and contact angles with smoothed particle hydrodynamics. Phys Rev E 72:026301

    Google Scholar 

  • Tartakovsky AM, Meakin P (2006) Pore scale modeling of immiscible and miscible fluid flows using smoothed particle hydrodynamics. Adv Water Resour 29:1464–1478

    Google Scholar 

  • Torp TA, Gale J (2004) Demonstrating storage of CO2 in geological reservoirs: the Sleipner and SACS projects. Energy 29:1361–1369

    Google Scholar 

  • Van Alphen K, Noothout P, Hekkert M, Turkenburg W (2010) Evaluating the development of carbon capture and storage technologies in the United States. Renew Sust Energ Rev 14:971–986

    Google Scholar 

  • Vasco DW, Rucci A, Ferretti A, Novali F, Bissell RC, Ringrose PS, Wright IW (2010) Satellite-based measurements of surface deformation reveal fluid flow associated with the geological storage of carbon dioxide. Geophys Res Lett 37(3), L03303

    Google Scholar 

  • Vella D, Huppert HE (2006) Gravity currents in a porous medium at an inclined plane. J Fluid Mech 555:353–362

    Google Scholar 

  • Verdon J, Woods AW (2007) Gravity-driven reacting flows in a confined porous aquifer. J Fluid Mech 588:29–41

    Google Scholar 

  • Verdon J, Kendall J-M, White DJ, Angus DA (2011) Linking microseismic event observations with geomechanical models to minimize the risks of storing CO2 in geological formations. Earth Planet Sci Lett 305(1–2):143–152

    Google Scholar 

  • Vogel HJ, Tölke J, Schulz VP, Krafczyk M, Roth K (2005) Comparison of a lattice-Boltzmann model, a full-morphology model, and a pore network model for determining capillary pressure-saturation relationships. Vadose Zone J 4:380–388

    Google Scholar 

  • Walsh A (1956) The application of atomic absorption spectra to chemical analysis. Spectrochim Acta 7:108–117

    Google Scholar 

  • Wang G, Zhao J, Zhang F, Tao Y, Yang X, Wang H (2013) Interactions of CO2-brine-rock in sandstone reservoir. J Cent South Univ 44(3):1167–1173

    Google Scholar 

  • Werth CJ, Zhang C, Brusseau ML, Oostrom M, Baumann T (2010) A review of non-invasive imaging methods and applications in contaminant hydrogeology research. J Contam Hydrol 113:1–24

    Google Scholar 

  • Wheeler J, Wheeler MF (2001) Integrated parallel and accurate reservoir simulator. Technical report, TICAM01-25, CSM, University of Texas at Austin, Austin, TX

  • Winthaegen P, Arts R, Schroot B (2005) Monitoring subsurface CO2 storage. Oil Gas Sci Technol 60:573–582

    Google Scholar 

  • Wolf FG, dos Santos LOE, Philippi PC (2009) Modeling and simulation of the fluid–solid interaction in wetting. J Stat Mech 6, P06008

    Google Scholar 

  • Xu T, Sonnenthal E, Spycher N, Pruess K (2006) TOUGHREACT: a simulation program for non-isothermal multi-phase reactive geochemical transport in variably saturated geologic media—applications to geothermal injectivity and CO2 geological sequestration. Comput Geosci 32:145–165

    Google Scholar 

  • Xu R, Luo S, Jiang P (2011) Pore scale numerical simulation of supercritical CO2 injecting into porous media containing water. Energy Procedia 4:4418–4424

    Google Scholar 

  • Xue Z, Tanase D, Watanabe J (2006) Estimation of CO2 saturation from time-lapse CO2 well logging in an onshore aquifer, Nagaoka, Japan. Explor Geophys 37:19–29

    Google Scholar 

  • Yamamoto H, Zhang K, Karasaki K, Marui A, Uehara H, Nishikawa N (2009a) Large-scale numerical simulation of CO2 geologic storage and its impact on regional groundwater flow: a hypothetical case study at Tokyo Bay, Japan. Energy Procedia 1:1871–1878

    Google Scholar 

  • Yamamoto H, Zhang K, Karasaki K, Marui A, Uehara H, Nishikawa N (2009b) Numerical investigation concerning the impact of CO2 geologic storage on regional groundwater flow. Int J Green Gas Control 3:586–599

    Google Scholar 

  • Yang X, Chen X, Carrigan CR, Ramirez AL (2014) Uncertainty quantification of CO2 saturation estimated from electrical resistance tomography data at the Cranfield site. Int J Green Gas Control 27:59–68

    Google Scholar 

  • Yue X, Weinan E (2005) Numerical methods for multiscale transport equations and application to two-phase porous media flow. J Comput Phys 210:656–675

    Google Scholar 

  • Zhao Y, Song Y, Liu Y, Liang H, Dou B (2011) Visualization and measurement of CO2 flooding in porous media using MRI. Ind Eng Chem Res 50(8):4707–4715

    Google Scholar 

  • Zheng H, Shu C, Chew Y (2006) A lattice Boltzmann model for multiphase flows with large density ratio. J Comput Phys 218:353–371

    Google Scholar 

  • Zimmer M, Erzinger J, Kujawa C (2011) The gas membrane sensor (GMS): a new method for gas measurements in deep boreholes applied at the CO2SINK site. Int J Green Gas Control 5:995–1001

    Google Scholar 

  • Zyvoloski G (2007) FEHM: a control volume finite element code for simulating subsurface multi-phase multi-fluid head and mass transfer. LA-UR-07-3359, Los Alamos National Laboratory, Los Alamos, NM

Download references

Acknowledgements

Authors acknowledge the anonymous reviewer and Prof. Jean-Michel Lemieux for their constructive comments, which greatly improved the clarity of our manuscript. This work was financially supported by the National Science Foundation of China (Nos. 51376033, 51206017, 41004031) and the Fundamental Research Funds for the Central Universities (No. DUT12JN13).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongchen Song.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, D., Dong, B., Breen, S. et al. Review: Approaches to research on CO2/brine two-phase migration in saline aquifers. Hydrogeol J 23, 1–18 (2015). https://doi.org/10.1007/s10040-014-1186-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10040-014-1186-1

Keywords

Navigation