Skip to main content

Advertisement

Log in

The effect of urban heat islands on geothermal potential: examples from Quaternary aquifers in Finland

L’effet des îles de chaleur urbaine sur le potentiel géothermique: exemples d’aquifères quaternaires en Finlande

El efecto de islas de calor urbanas en el potencial geotérmico: ejemplos de acuíferos cuaternarios en Finlandia

城市热岛对地热潜力的影响:芬兰第四系含水层的实例

O efeito de ilhas de calor urbanas no potencial geotérmico: exemplos de aquíferos quaternários na Finlândia

  • Paper
  • Published:
Hydrogeology Journal Aims and scope Submit manuscript

Abstract

The use of renewable energy can be enhanced by utilising groundwater reservoirs for heating and cooling purposes. The urbanisation effect on the peak heating and peak cooling capacity of groundwater in a cold groundwater region was investigated. Groundwater temperatures were measured and energy potentials calculated from three partly urbanised aquifers situated between the latitudes of 60° 25′N and 60° 59′N in Finland. The average groundwater temperature below the zone of seasonal temperature fluctuations was 3–4 °C higher in the city centres than in the rural areas. The study demonstrated that due to warmer groundwater, approximately 50–60 % more peak heating power could be utilized from populated areas compared with rural areas. In contrast, approximately 40–50 % less peak cooling power could be utilised. Urbanisation significantly increases the possibility of utilising local heat energy from groundwater within a wider region of naturally cold groundwater. Despite the warming in urban areas, groundwater still remains attractive as a source of cooling energy. More research is needed in order to determine the long-term energy capacity of groundwater, i.e. the design power, in urbanised areas of cold regions.

Résumé

L’utilisation d’énergie renouvelable peut être améliorée en utilisant les réservoirs d’eau souterraine pour des besoins en chauffage et en refroidissement. L’effet de l’urbanisation sur la capacité des eaux souterraines en matière de satisfaction des pics de chauffage et de refroidissement dans une région aux eaux souterraines froides, a été étudié. Les températures des eaux souterraines ont été mesurées et les potentiels énergétiques ont été calculées à partir de trois aquifères partiellement urbanisés situés aux latitudes comprises entre 60° 25′N et 60° 59′N en Finlande. La température moyenne des eaux souterraines en-dessous de la zone de fluctuations saisonnières des températures était de 3–4 °C plus élevée dans les centres urbains que dans les zones rurales. L’étude a démontré qu’à cause de la présence d’eaux souterraines plus chaudes, plus de 50-60 % de la puissance de chauffage de pointe pourrait être satisfaite dans des zones à forte densité démographique par rapport aux zones rurales. En revanche, environ moins de 40 à 50 % de puissance de refroidissement de pointe pourraient être satisfaits. L’urbanisation augmente considérablement la possibilité d’utiliser la chaleur locale de l’eau souterraine au sein d’une région plus importante caractérisée par des eaux souterraines naturellement froides. Malgré le réchauffement dans les zones urbaines, les eaux souterraines restent attractives en tant que source d’énergie de refroidissement. Plus de recherche est nécessaire afin de déterminer la capacité énergétique à long terme des eaux souterraines, à savoir le pouvoir énergétique dans les zones urbanisées de régions froides.

Resumen

El uso de la energía renovable puede ser enriquecido utilizando de reservorios de agua subterránea para fines de calentamiento y enfriamiento. Se investiga el efecto de la urbanización en la aptitud del agua subterránea en el pico de calentamiento y de enfriamiento en una región de agua subterránea fría. Se midieron las temperaturas del agua subterránea y se calcularon las potenciales energías a partir de tres acuíferos parcialmente urbanizados situados entre las latitudes de 60° 25′N y 60° 59′N en Finlandia. La temperatura promedio del agua subterránea debajo de la zona de fluctuaciones estacionales fue 3–4 °C más alta en el centro de la ciudad que en las áreas rurales. El estudio demostró que debido al agua subterránea más cálida, se podría utilizar aproximadamente 50–60 % más el pico de energía en el calentamiento a partir de las áreas habitadas comparadas con las áreas rurales. En contraste, se podría utilizar aproximadamente 40–50 % menos de energía en el pico de enfriamiento. La urbanización incrementa significativamente la posibilidad de utilizar la energía de calentamiento local a partir del agua subterránea dentro de una región más amplia de agua subterránea naturalmente fría. A pesar del calentamiento en áreas urbanas el agua subterránea aún permanece atractiva como una fuente de energía de enfriamiento. Se necesita una mayor investigación para determinar a largo plazo la capacidad de energía del agua subterránea, es decir la energía para el diseño, en áreas urbanizadas de regiones frías.

摘要

通过利用地下水储层加热及冷却可提高可再生能源的使用效率。调查了城市化对寒冷地下水区地下水的最大加热能力和最大冷却能力。对位于芬兰北纬60° 25′N 至 60° 59′N之间三个在一定程度上城市化的含水层的地下水温进行了测量并对能源潜力进行了计算。季节性温度波动带之下的平均地下水温城市中心比农村地区高3–4 °C. 研究显示,由于地下水温度较温暖,与农村地区相比,人口居住区的最 大加热能力大约高50–60 %。相比之下,最大冷却能力大约少40–50 %。城市化大大增加了在更广阔的天然寒冷地下水地区内利用局部热能的可能性。尽管城市地区温度升高,但地下水作为冷却能源的来源仍然具有吸引力。需要更多的研究以确定地下水的长期能源能力,即寒冷地区城区的设计能力。

Resumo

É possível reforçar o uso de energia renovável através da utilização de reservatórios de água subterrânea para fins de aquecimento e arrefecimento. Investigou-se o efeito da urbanização sobre a capacidade de aquecimento máximo e refrigeração máxima da água subterrânea numa região de águas subterrâneas frias. Mediram-se temperaturas de águas subterrâneas e calcularam-se potenciais de energia de três aquíferos parcialmente urbanizados situados entre as latitudes de 60° 25′N e 60° 59′N, na Finlândia. A temperatura média das águas subterrâneas, por baixo da zona das oscilações sazonais, foi 3–4 °C mais elevada nos centros urbanos do que nas áreas rurais. O estudo demonstrou que, devido às águas subterrâneas mais quentes, era possível utilizar cerca de 50–60 % mais potência de aquecimento máximo proveniente de áreas povoadas em comparação com áreas rurais. Em contrapartida, a potência de arrefecimento máximo utilizável desceria aproximadamente 40–50 %. A urbanização aumenta significativamente a possibilidade de utilizar a energia de calor local da água subterrânea dentro de uma região mais vasta de águas subterrâneas naturais frias. Apesar do aquecimento nas áreas urbanas, as águas subterrâneas mantêm-se atrativas como uma fonte de energia de arrefecimento. Necessita-se de mais investigação para determinar a capacidade energética das águas subterrâneas a longo prazo, nomeadamente no que respeita à conceção do seu aproveitamento, em áreas urbanizadas de regiões frias.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig .3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Alalammi P (1987) Atlas of Finland, folio 131: climate. National Board of Survey, Geographical Society of Finland, Helsinki

    Google Scholar 

  • Allen A, Milenic D (2003) Low enthalpy geothermal energy resources from groundwater in fluvioglacial gravels of buried valleys. Appl Energ 74:9–19

    Article  Google Scholar 

  • Allen AR, McGovern C, O’Brien M, Leahy KL, Connor BP (1999) Hydrogeology and land use management. IAH, Bratislava, Slovakia, pp 655–664

  • Allen A, Milenic D, Sikora P (2003) Shallow gravel aquifers and the urban ‘heat island’ effect: a source of low enthalpy geothermal energy. Geothermics 32:569–578. doi:10.1016/S0375-6505(03)00063-4

    Article  Google Scholar 

  • Andea P, Mnerie D, Cristian D, Pop O, Jigoria-Oprea D (2010) Conventional vs. alternative energy sources overview: part I, energy and environment. In: Computational Cybernetics and Technical Informatics (ICCC-CONTI), 2010 International Joint Conference. Timisoara, Romania, May 2010, pp 595–600

  • Andersson O (1994) Aquifer thermal energy storages in Sweden: experiences so far and market potential. In: Kangas MT, Lund PT (eds) Thermal energy storage: better economy, environment, technology: proceedings, vol 2. Calorstock ’94, 6th International Conference on Thermal Energy Storage, Espoo, Finland, August 1994, pp 22–25

  • Arola T, Rantala J, Palin A, Lehtonen M (2011) Lohjan pohjavesialueiden suojelusuunnitelma [Groundwater protection plan for Lohja]. Project report, Golder Associates Oy, Turku, Finland

    Google Scholar 

  • Bakema G, van der Hengel P M (1994) Cooling the largest events hall in the Benelux with an ATES system. In: Kangas MT, Lund PT (eds) Thermal energy storage: better economy, environment, technology: proceedings, vol 2. Calorstock ’94, 6th International Conference on Thermal Energy Storage, 22–25 August 1994, Espoo, Finland

  • Banks D (2012) An introduction to thermogeology: ground source heating and cooling. Wiley-Blackwell, Oxford, UK

    Google Scholar 

  • Banks D, Parnachev VP, Frengstad B, Holden W, Karnachuk OV, Vedernikov AA (2004) The evolution of alkaline, saline ground- and surface waters in the southern Siberian steppes. Appl Geochem 19:1905–1926. doi:10.1016/j.apgeochem.2004.05.009

    Article  Google Scholar 

  • Banks D, Gandy CJ, Younger PL, Withers J, Underwood C (2009) Anthropogenic thermogeological ‘anomaly’ in Gateshead, Tyne and Wear, UK. Q J Eng Geol Hydrogeol 42:307–312. doi:10.1144/1470-9236/08-024

  • Bayer P, Saner D, Bolay S, Rybach L, Blum P (2011) Greenhouse gas emission savings of ground source heat pump systems in Europe: a review. Renew Sust Energ Rev 16:1256–1267. doi:10.1016/j.rser.2011.09.027

    Article  Google Scholar 

  • Bonte M, Stuyfzand P, Hulsmann A, van Beelen P (2011) Underground thermal energy storage: environmental risks and policy developments in the Netherlands and European Union. Ecol Soc 16(1):22

    Google Scholar 

  • Bornstein RD (1968) Observations of the urban heat island effect in New York City. J Appl Meteorol Climatol 7:575–582

    Article  Google Scholar 

  • Budel J (1982) Climatic geomorphology. Princeton University, Princeton, NJ

    Google Scholar 

  • Cotton WR, Pielke RA (1995) Human impacts on weather and climate. Cambridge University Press, Cambridge

    Google Scholar 

  • Cruickshanks F, Adsett E (1994) Sussex health centre aquifer thermal energy storage. In: Kangas MT, Lund PT (eds) Thermal energy storage: better economy, environment, technology—proceedings, vol 1. Calorstock ’94, 6th International Conference on Thermal Energy Storage, 22–25 August 1994, Espoo, Finland

  • EHPA (2009) European heat pump statistic: outlook 2009. European Heat Pump Association, Brussels, 65 pp

  • Ferguson G, Woodbury AD (2004) Subsurface heat flow in an urban environment. J Geophys Res 109, B02402. doi:10.1029/2003JB002715,2004

    Google Scholar 

  • Ferguson G, Woodbury AD (2006) Observed thermal pollution and post-development simulations of low-temperature geothermal system in Winnipeg, Canada. Hydrogeol J 14:1206–1215. doi:10.1007/s10040-006-0047-y

    Article  Google Scholar 

  • Ferguson G, Woodbury AD (2007) Urban heat island in the subsurface. Geophys Res Lett 34, L23713. doi:10.1029/2007GL032324,2007

    Google Scholar 

  • Haehlein S, Bayer P, Blum P (2010) International legal status of the use of shallow geothermal energy. Renew Sust Energ Rev 14:2611–2625. doi:10.1016/j.rser.2010.07.069

    Article  Google Scholar 

  • Iihola T, Ala-Peijari T, Seppänen H (1988) Aquifer thermal energy storage in Finland. Water Sci Technol 20(3):75–86

    Google Scholar 

  • Finnish Environment Institute (2006) The Corine 2006 database. http://wwwd3.ymparisto.fi/d3/Static_rs/spesific/corinelandcover.html. Accessed 29 Dec 2012

  • Finnish Environment Institute (2012) The Hertta database. http://wwwp2.ymparisto.fi/scripts/hearts/welcome.asp. Accessed 10 Jul 2012

  • Jylhä K, Kalamees T, Tietäväinen H, Ruosteenoja K, Jokisalo J, Hyvönen R, Ilomets S, Saku S, Hutila A (2011) Rakennusten energialaskennan testivuosi 2012 ja arviot ilmastonmuutoksen vaikutuksista [Test reference year 2012 for building energy demand and impacts of climate change]. Report no. 2011, Finnish Meteorological Institute, Helsinki, 6 pp

  • Kalamees T, Jylhä K, Tietäväinen H, Jokisalo J, Ilomets S, Hyvönen R, Saku S (2011) Development of weighting factors for climate variables for selecting the energy reference year according to the EN ISO 15927-4 standard. Energ Build 47:53–60. doi:10.1016/j.enbuild.2011.11.031

  • Karhunen R (2004) Iniön ja Turun kartta-alueiden kallioperä. Suomen geologinen kartta 1:100 000. Kallioperäkarttojen selitykset, lehdet 1041 ja 1043 [Pre-Quaternary rocks of the Iniö and Turku map-sheet areas: explanation to the maps of Pre-Quaternary rocks, Sheets 1041 and 1043]. Geological Survey of Finland, Espoo, Finland

  • Karl TR, Diaz HF, Kukla G (1988) Urbanization: its detection and effect in the United States climate record. J Clim 1:1099–1123

    Article  Google Scholar 

  • Kasenov M (2001) Applied ground-water and hydrology and well hydraulics, 2nd edn. Water Resource Publications, Littleton, CO

  • Kerl M, Runge N, Tauchmann H, Goldscheider N (2012) Hydrogeologisches Konzeptmodell von München: Grundlage für die thermische Grundwassernutzung [Conceptual hydrogeological model of the city of Munich, Germany, as a basis for geothermal groundwater utilisation]. Grundwasser 17(3):127–135. doi:10.1007/s00767-012-0199-8

    Article  Google Scholar 

  • Lahermo P, Ilmasti M, Juntunen R, Taka M (1990) The hydrogeochemical mapping of Finnish aquifers. In: Geochemical atlas of Finland, part 1. Geological Survey of Finland. Espoo, Finland, 66 pp

  • Landsberg HE (1981) The urban climate. Int. Geophys. Ser., vol 28. Academic, New York

  • Lehijärvi M (1964) Kallioperäkartan selitys. Lahti. Suomen geologinen kartta 1:100 000. Lehti 3111 [Geological map of Finland, sheet 3111 Lahti: explanation to the map of rocks]. Geological Survey of Finland, Espoo, Finland

  • Leppäharju N (2008) Kallioenergian hyödyntämiseen vaikuttavat geofysikaaliset ja geologiset tekijät [Geophysical and geological factors of bedrock energy utilisation]. MSc Thesis, University of Oulu, Finland, 91 pp

  • Lunkka JP, Johansson P, Saarnisto M, Sallasmaa O (2004) Glaciation in Finland. In: Ehlers J, Gibbard PL (eds) Quaternary glaciations: extent and chronology. Elsevier, Amsterdam, pp 93–100

    Google Scholar 

  • Mälkki E, Soveri J (1986) Pohjavesi [Groundwater]. In: Mustonen S (ed) Sovellettu hydrologia [Applied hydrology]. Vesiyhdistys ry. Mäntän kirjapaino, Mänttä, Finland

  • Mäyränpää R (2012) Hollola-Lahti-Nastola. Seudullinen pohjaveden suojelusuunnitelma vuosille 2012–2021 [Groundwater protection plan for Hollola-Lahti-Nastola area for 2012–2021]. Project report. Lahden seuden ympäristöpalvelut, Lahti, Finland

  • McKenzie JM, Voss CI, Siegel DI (2007) Groundwater flow with energy transport and water ice-phase change: numerical simulations, benchmarks, and application to freezing in peat bogs. Adv Water Resour 30:966–983. doi:10.1016/j.advwatres.2006.08.008

    Article  Google Scholar 

  • Menberg K, Bayer P, Zosseder K, Rumohr S, Blum P (2013a) Subsurface urban heat islands in German cities. Sci Total Environ Vol 442:123–133. doi:10.1016/j.scitotenv.2012.10.043

    Article  Google Scholar 

  • Menberg K, Blum P, Shaffitel A, Bayer P (2013b) Long-term evolution of anthropogenic heat fluxes into a subsurface urban heat island. Environ Sci Technol 47:9747–9755. doi:10.1021/es401546u

    Article  Google Scholar 

  • Ministry of Employment and the Economy (2010) Finland’s national action plan for promoting energy from renewable sources pursuant to Directive 2009/28/EC. Ministry of Employment and the Economy, Energy Dept., Helsinki, Finland

  • Moberg K AD (1888) Kertomus karttalehteen no. 8. Lahti [Explanation to map sheet 8. Lahti]. Weilin ja Göös osakeyhtiön kirjapaino, Helsinki, Finland

  • Moberg K AD (1889) Kertomus karttalehteen no. 2. Lohja [Explanation to map sheet 2. Lohja] Weilin ja Göös osakeyhtiön kirjapaino, Helsinki, Finland

  • Moberg K AD (1890) Kertomus karttalehteen no. 10. Turku [Explanation to map sheet 10. Turku]. Suomalaisen kirjallisuuden seuran kirjapaino, Finland

  • Niemelä J, Sten C-G, Taka M, Winterhalter B (1987) Turun-Salon seudun maaperä. Suomen geologinen kartta 1:100 000. Maaperäkarttojen selitykset, lehdet 1043 ja 2021 [Quaternary deposits in the Turku-Salo map-sheet areas. Geological map of Finland 1:100 000. Explanation to the maps of Quaternary deposits, sheets 1043 and 2021]. Geological Survey of Finland, Espoo, Finland

  • Oikari H (1981) Pohjaveden lämpötila Etelä- ja Keski-Suomessa vuosina 1975–1978. Vesihallituksen lähde- ja pohjavesiputkihavaintoihin perustuva selvitys [Groundwater temperature in southern and central Finland in 1975–1978]. MSc Thesis, University of Helsinki, Finland, 65 pp

  • Oke TR (1973) City size and the urban heat island. Atmospheric Environ 7:769–779

    Article  Google Scholar 

  • Parnachev VP, Banks D, Berezovsky AY, Garbe-Schönberg D (1999) Hydrochemical evolution of Na–SO4–Cl groundwaters in a cold, semi-arid region of southern Siberia. Hydrogeol J 7:546–560. doi:10.1007/s100400050228

    Article  Google Scholar 

  • Parsons ML (1970) Groundwater thermal regime in glacial complex. Water Resour Res 6:1701–1720

    Article  Google Scholar 

  • Preston-Whyte R A (1970) A spatial model of an urban heat island. J Appl Meteorol 9: 571–573. doi: 10.1175/1520-0450(1970)009<0571:ASMOAU>2.0.CO;2

  • Punkari M (1982) Glacial morphology and dynamics in the eastern part of the Baltic shield interpreted using Landsat imagery. Photogramm J Finland 9:77–93

    Google Scholar 

  • Rantala J, Arola T (2004) Piispanristin-Skanssin alueen ympäristötekninen maaperä ja pohjavesiselvitys [Environmental soil and groundwater report for Piispanristi-Skanssi area]. Project report, Golder Associates Oy, Turku, Finland

    Google Scholar 

  • Rosen B, Gabrielsson A, Fallsvik J, Hellström G, Nilsson G (2001) System för värme och kyla ur mark: en nulägesbeskrivning [Systems for heating and cooling from the ground: a status report]. Varia 511, Statens Geotekniska Institut, Lindköping, Sweden

  • Saarnisto M, Salonen V-P (1995) Glacial history of Finland. In: Ehlers J, Kozarski S, Gibbard PL (eds) Glacial deposits in north-east Europe. Balkama, Rotterdam, The Netherlands, pp 3–10

    Google Scholar 

  • Saner D, Juraske R, Kübert M, Blum P, Helweg S, Bayer P (2010) Is it only CO2 that matters? A life cycle perspective on shallow geothermal system. Renew Sust Energ Rev 14:1798–1813. doi:10.1016/j.rser.2010.04.002

    Article  Google Scholar 

  • Sanner B (2001) Shallow geothermal energy. GHC Q Bull 22(2). geoheat.oit/bulletin/bull22-2/art4.pdf. Accessed July 2014

  • Silliman SE, Booth DF (1993) Analysis of time-series measurements of sediment temperature for identification of gaining vs. loosing portions of Juday Creek, Indiana. J Hydrol 146:131–148

    Article  Google Scholar 

  • Sörensen SN, Reffstrup J, Qvale B (1994) Groundwater used for cooling and seasonal storage in Denmark. In: Kangas MT, Lund PT (eds) Thermal energy storage: better economy, environment, technology: proceedings, vol 2. Calorstock ’94, 6th International Conference on Thermal Energy Storage, 22–25 August 1994, Espoo, Finland

  • Soveri J (1985) Influence of meltwater on the amount and composition of groundwater in Quaternary deposits in Finland. National Board of Waters, Helsinki, Finland

    Google Scholar 

  • Statistics Finland (2012a) Official statistics of Finland (OSF): energy supply and consumption (e-publication). 4th Quarter 2012, Statistics Finland, Helsinki, Finland. http://www.stat.fi/tup/kunnat/kuntatiedot/398.html. Accessed 7 Nov 2012

  • Suomi J, Käyhkö J (2011) The impact of environmental factors on urban temperature variability in the coastal city of Turku, SW Finland. Int J Climatol 32:451–463. doi:10.1002/joc.2277

    Article  Google Scholar 

  • The Geological Survey of Finland (2012) Lohja bedrock map. Geological Survey of Finland, Espoo, Finland. http://geomaps2.gtk.fi/activemap. Accessed 12 July 2012

  • Tanicughi M, Uemura T, Jago-on K (2007) Combined effects of urbanisation and global warming on subsurface temperature in four Asian cities. Vadose Zone J 6:591–6. doi:10.2136/vzj2006.0094

    Article  Google Scholar 

  • Tietäväinen H, Tuomenvirta H, Venäläinen A (2010) Annual and seasonal mean temperatures in Finland during the last 160 years based on gridded temperature data. Int J Climatol 30(15):2247–2256. doi:10.1002/joc.2046

    Article  Google Scholar 

  • Woo M-K, Marsh P (2005) Snow, frozen soils and permafrost hydrology in Canada 1999–2002. Hydrol Process 19:215–229. doi:10.1002/hyp.5772

    Article  Google Scholar 

  • Yalcin T, Yetemen O (2009) Local warming of groundwaters caused by the urban heat island effect in Istanbul, Turkey. Hydrogeol J 17:1247–1255. doi:10.1007/s10040-009-0474-7

    Article  Google Scholar 

  • Yaws C (1998) Chemical properties handbook: physical thermodynamic, environmental, transport, safety and health related properties for organic and inorganic chemicals. McGraw-Hill, New York

  • Zhu K, Blum P, Ferguson G, Balke K-D, Bayer P (2010) The geothermal potential of urban heat islands. Environ Res Lett 5:044002. doi:10.1088/1748-9326/5/4/044002

    Article  Google Scholar 

Download references

Acknowledgements

The authors wish to thank the following organisations who kindly allowed us to use their groundwater monitoring wells and provided help with this research: the City of Turku; Turun vesilaitos; the City of Lohja; Lohjan vesi- ja viemärilaitos; the Centre for Economic Development, Transport and the Environment for Uusimaa; Lahti Aqua; St1 Energy Oy; Neste Oil Oyj; Oy Teboil Ab; TOK and SOK. We also thank Professor Veli-Pekka Salonen and Dr Martin Preene for their support and advice, Dr Roy Siddall for language revision and Dr Sakari Salonen for helping us with regression tree analysis. Special thanks go to colleagues at the Turku office of Golder Associates. This research was funded by Golder Associates Oy, Maa- ja vesitekniikan tuki ry and the K.H. Renlund Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Teppo Arola.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arola, T., Korkka-Niemi, K. The effect of urban heat islands on geothermal potential: examples from Quaternary aquifers in Finland. Hydrogeol J 22, 1953–1967 (2014). https://doi.org/10.1007/s10040-014-1174-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10040-014-1174-5

Keywords

Navigation