Skip to main content
Log in

Hydrogeology of northern Sierra de Chiapas, Mexico: a conceptual model based on a geochemical characterization of sulfide-rich karst brackish springs

Hydrogéologie du nord de la Sierra du Chiapas, Mexique: un modèle conceptuel établi à partir de la caractérisation géochimique de sources karstiques saumâtres riches en sulfures

Hidrogeología de la parte norte de la Sierra de Chiapas, México: un modelo conceptual en base de la caracterización geoquímica de manantiales cársticos con agua salobre rica en sulfuros

墨西哥Sierra de Chiapas州北部水文地质状况:根据富硫化物微咸岩溶泉地球化学特征建立的概念模型

Hidrogeologia do norte da Serra de Chiapas, México: modelo concetual baseado na caraterização geoquímica de nascentes cársicas salobras ricas em sulfuretos

  • Report
  • Published:
Hydrogeology Journal Aims and scope Submit manuscript

Abstract

Conspicuous sulfide-rich karst springs flow from Cretaceous carbonates in northern Sierra de Chiapas, Mexico. This is a geologically complex, tropical karst area. The physical, geologic, hydrologic and chemical attributes of these springs were determined and integrated into a conceptual hydrogeologic model. A meteoric source and a recharge elevation below 1,500 m are estimated from the spring-water isotopic signature regardless of their chemical composition. Brackish spring water flows at a maximum depth of 2,000 m, as inferred from similar chemical attributes to the produced water from a nearby oil well. Oil reservoirs may be found at depths below 2,000 m. Three subsurface environments or aquifers are identified based on the B, Li+, K+ and SiO2 concentrations, spring water temperatures, and CO2 pressures. There is mixing between these aquifers. The aquifer designated Local is shallow and contains potable water vulnerable to pollution. The aquifer named Northern receives some brackish produced water. The composition of the Southern aquifer is influenced by halite dissolution enhanced at fault detachment surfaces. Epigenic speleogenesis is associated with the Local springs. In contrast, hypogenic speleogenesis is associated with the brackish sulfidic springs from the Northern and the Southern environments.

Résumé

De remarquables sources karstiques riches en sulfures émergent des carbonates du Crétacé dans le nord de la Sierra du Chiapas au Mexique. C’est une zone karstique tropical complexe du point de vue géologique. Les caractéristiques physiques, géologiques, hydrologiques et chimiques de ces sources ont été déterminées et intégrées dans un modèle conceptuel hydrogéologique. La source météorique et l’altitude de recharge située sous 1500 m ont été estimées à partir de la signature isotopique des eaux des sources, indépendamment de leur composition chimique. L’eau saumâtre des sources circule à une profondeur maximale de 2000 m, selon les caractéristiques chimiques similaires d’eau de production d’un forage pétrolier situé à proximité. Les réservoirs d’huile peuvent être situés à des profondeurs inférieures à 2000 m. Trois environnements souterrains ou aquifères sont identitifés sur la base des concentrations en B, Li+, K+ et SiO2, des températures de l’eau des sources et la pression en CO2. Il y a un mélange entre ces aquifères. L’aquifère nommé Local est peu profond et contient une eau potable vulnérable à la pollution. L’aquifère nommé du Nord est le receptacle d’une eau saumâtre. La composition de l’aquifère dit du Sud est influencé par la dissolution de l’halite renforcée au niveau des surfaces actives des failles. Une spéléogenèse épigénique est associé aux sources de l’aquifère dit Local. En revanche, la spéléogenèse hypogénique est associé aux sources saumâtres sulfurées des aquifères du Nord et du Sud.

Resumen

Notables manantiales cársticos sulfídicos fluyen de carbonatos cretácicos al norte de la Sierra de Chiapas, México. Esta es un área cárstica tropical con una geología compleja. Se determinaron los atributos físicos, geológicos, hidrológicos y químicos de estos manantiales integrándose en un modelo hidrogeológico conceptual. En base de su composición isotópica se infiere que el agua de estos manantiales tien un origen meteórico y un área de recarga a elevaciones menores de 1500 m, sin importar su composición química. El agua salobre de los manantiales circula a una profundidad máxima de 2000 m usando como referencia su similitud con el agua de producción de un pozo petrolero cercano. Además, es posible que existan reservas petroléras a profunidades mayores a 2000 m. Se identificaron tres ambientes subterráneos o acuíferos caracterizados por su concentración de B, Li+, K+, SiO2, la temperatura del agua y la presión de CO2. Existe evidencia de mezcla entre el agua de estos tres acuíferos. El acuífero designado como Local se encuentra a poca profundidad y contiene agua potable vulnerable a la contaminación. El acuífero del Norte recibe agua de producción salobre. La composición del acuífero del Sur está influenciada por disolución de halita la cual se incrementa en las superficies de despegue de las fallas. La espeleogénesis epigénica se asocia con los manantiales Locales. En contraste, la espeleogénesis hipogénica se asocia con los manantiales salobres sulfídicos de los ambientes del Norte y del Sur.

摘要

显著富含硫化物的岩溶泉源自墨西哥州北部的白垩纪碳酸盐地层。这个地层地质上非常复杂为热带岩溶区。确定了这些泉的物理、地质水文和化学属性并将其融入了水文地质概念模型。根据泉水同位素特征估算了海拔米以下的大气源和补给源而没有考虑其化学组成。微咸泉水最大流动深度为正如类似化学特征推断的那样来自附近油井产生出的水。在地表以下米可发现油储。依据、 和 含量、泉水温度和确认了三个这样的地表以下环境或含水层。这些含水层之间有混合。指定为当地的含水层是浅层含水层含容易遭受污染的饮用水。命名为北部的水层接收一些产生的微咸水。南部的含水层的组分受断层分离面处岩盐溶解的影响。外成洞穴形成过程与当地的泉有关。与此相反深成的洞穴形成过程与北部和南部环境中的微咸硫化物泉有关。

Resumo

Importantes nascentes cársicas ricas em sulfuretos drenam carbonatos cretácicos na Serra de Chiapas Norte, no México. Trata-se de uma área tropical cársica geologicamente complexa. As caraterísticas físicas, geológicas, hidrológicas e químicas destas nascentes foram determinadas e integradas num modelo hidrogeológico concetual. Assente apenas na assinatura isotópica da água das nascentes, sem se ter em conta a sua composição química, estima-se uma origem meteórica e uma altitude de recarga abaixo dos 1500 m. A partir das caraterísticas químicas semelhantes da água produzida num furo de petróleo localizado nas imediações, inferiu-se uma profundidade máxima de circulação da água salobra das nascentes de 2000 m. Os reservatórios de petróleo podem localizar-se abaixo dos 2000 m de profundidade. Com base nas concentrações de B, Li+, K+ e SiO2, na temperatura da água das nascentes e na pressão de CO2, foram identificados três ambientes subsuperficiais ou aquíferos. Há mistura entre estes aquíferos. O aquífero designado Local é subsuperficial e tem água potável vulnerável à poluição. O aquífero designado Norte recebe alguma água salobra produzida. A composição do aquífero Sul é influenciada pela dissolução de halite, que é potenciada pelas superfícies de desligamento das paredes das falhas. A espeleogénese epigénica está associada às nascentes do aquífero Local. Por outro lado, a espeleogénese hipogénica está associada às nascentes salobras sulfurosas dos ambientes Norte e Sul.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Aguilar-Rodríguez A (2001) La infiltración de agua meteórica baja la calidad de los crudos de la Región Sur [Meteoric water infiltration lowers the quality of oils in the South Region]. Horiz Sur 16:5–8

    Google Scholar 

  • Aguilar-Rodríguez A (2007) Presencia de hidrocarburos en el municipio de Tacotalpa, Tabasco [Presence of hydrocarbons in the municipality of Tacotalpa, Tabasco]. Horiz Sur 10:5–9

    Google Scholar 

  • Alcántara-García JM, Ham-Wong JM, Medina Flores U, Hernandez Penaloza JJ, de la Cruz Rivera VM, Pena Ramirez H, Namson J, Spaw JM (2004) Identification and evaluation of plays in the Simojovel Project, southeastern Mexico. Am Assoc Pet Geol International Conference October 24–27, Cancun, Mexico

  • Appelo CAJ, Postma D (2005) Geochemistry, groundwater and pollution, vol 2. Balkema, Leiden, 649 pp

    Book  Google Scholar 

  • Aquino-López JA (2004) Sureste basin, Mexico and associated sub-basins: an update and future potential. Am Assoc Pet Geol International Conf., October 24–27 2004, Cancun, Mexico

  • Bagarinao T (1992) Sulfide as an environmental factor and toxicant: tolerance and adaptations in aquatic organisms. Aquat Toxicol 24:21–62

    Article  Google Scholar 

  • Barton HA, Luiszer F (2005) Microbial metabolic structure in a sulfidic cave hot spring: potential mechanisms of biospeleogenesis. J Cave Karst Stud 67(1):28–38

    Google Scholar 

  • Birkle P, Aguilar-Maruri R (2003) Isotopic indications for the origin of formation water at the Activo Samaria-Sitio Grande oil field, Mexico. J Geochem Explor 78–79:53–458

    Google Scholar 

  • Birkle P, Angulo M (2005) Conceptual hydrochemical model of late Pleistocene aquifers at the Samario–Sitio Grande petroleum reservoir, Gulf of Mexico, Mexico. Appl Geochem 20:1077–1098

    Article  Google Scholar 

  • Birkle P, Rosillo-Aragón E, Portugal E, Fong Aguilar JL (2002) Evolution and origin of deep reservoir water at the Activo Luna oil field, Gulf of Mexico, Mexico. Am Assoc Pet Geol Bul 86:457–484

    Google Scholar 

  • Birkle P, Angulo M, Lima S (2006) Hydrochemical-isotopic tendencies to define hydraulic mobility of formation water at the Samaria-Sitio Grande oil field, Mexico. J Hydrol 317:202–220

    Article  Google Scholar 

  • Birkle P, Martínez-García B, Milland Padrón CM (2009a) Origin and evolution of formation water at the Jujo-Tecominoacán oil reservoir, Gulf of Mexico, part 1: chemical evolution and water–rock interaction. Appl Geochem 24:543–554

    Article  Google Scholar 

  • Birkle P, Martínez-García B, Milland Padrón CM, Eglington BM (2009b) Origin and evolution of formation water at the Jujo-Tecominoacán oil reservoir, Gulf of Mexico, part 2: isotopic and field-production evidence for fluid connectivity. Appl Geochem 24:555–573

    Article  Google Scholar 

  • Blackwell DD, Richards MD (2004) Geothermal map of North America. Am Assoc Pet Geol, Tulsa, OK

  • Blake RE, Walter LM (1999) Kinetics of feldspar and quartz dissolution at 70–80 °C and near neutral pH: effects of organic acids and NaCl. Geochim Cosmochim Acta 63:2043–2059

    Article  Google Scholar 

  • Boston PJ, Hose LH, Northup DE, Spilde MN (2006) The microbial communities of sulfur caves: a newly appreciated geologically driven system on Earth and potential model for Mars. In: Harmon RS, Wicks C (eds) Perspectives on karst geomorphology, hydrology, and geochemistry: a tribute volume to Derek C. Ford and William B. White. Geol Soc Am Spec Pap 404:331–344

    Google Scholar 

  • Bottrell SH, Raiswell R, Leosson MA (1996) The influence of sulphur redox reactions and mixing on the chemistry of shallow groundwaters: the Harrogate mineral waters. J Geol Soc London 153:231–242

    Article  Google Scholar 

  • Bottrell SH, Moncaster SH, Tellam JH, Lloyd JW, Fisher QJ, Newton RJ (2000) Controls on bacterial sulphate reduction in a dual porosity aquifer system: the Lincolnshire Limestone aquifer, England. Chem Geol 169:461–470

    Article  Google Scholar 

  • Boulegue J (1977) Equilibria in a sulfide rich water from Engbien-les-Bains, France. Geochim Cosmochim Acta 41:1751–1758

    Article  Google Scholar 

  • Clark I, Fritz P (1997) Environmental isotopes in hydrogeology. Lewis, Boca Raton, FL, 328 pp

    Google Scholar 

  • Craig (1961) Isotopic variations in meteoric waters. Science 133(3465):1702–1703

    Article  Google Scholar 

  • Davis DG (1980) Cave development in the Guadalupe Mountains, a critical review of recent hypotheses. NSS Bull 42:42–48

    Google Scholar 

  • Davis SN, Whittemore DO, Martin JF (1998) Uses of chloride/bromide ratios in studies of potable water. Groundwater 36:338–350

    Article  Google Scholar 

  • Drever J (1982) The geochemistry of natural waters. Prentice-Hall, Upper Saddle River, NJ, 388 pp

    Google Scholar 

  • Dutrow BL, Henry DJ (2011) Tourmaline: a geologic DVD. Elements 7:301–306

    Article  Google Scholar 

  • Eaton AD, Clesceri LS, Greenber AE, Franson MAH (eds) (1995) Standard methods for the examination of water and wastewater, 19th edn. Am Public Health Assoc, Am Water Works Assoc, Water Environ Fed, Baltimore, MD

  • Estrada-Bárcenas D (2005) Biodiversidad de microartrópodeos en una cueva multienergetica en Tabasco, México [Biodiversity of microarthropods in a multienergetic cave in Tabasco, México]. MSc Thesis, UNAM, Mexico

  • Fetter CW (2000) Applied hydrogeology, vol 4. Prentice Hall, Upper Saddle River, NJ, 598 pp

    Google Scholar 

  • Ford D, Williams P (2007) Karst hydrogeology and geomorphology. Wiley, Chichester, UK, 576 pp

    Book  Google Scholar 

  • Galdenzi S (2006) Frasassi and H2S caves in central Italy, field-trip guidebook. Unione Tipografica, Jesina, Italy, 32 pp

    Google Scholar 

  • Galdenzi S, Cocchioni M, Morichetti L, Amici V, Scuri S (2008) Sulfidic groundwater chemistry in the Frasassi Caves, Italy. J Cave Karst Stud 70(2):94–107

    Google Scholar 

  • Galdenzi S, Cocchioni F, Filipponi G, Morichetti L, Scuri S, Selvaggio R, Cocchioni M (2010) The sulfidic thermal caves of Acquasanta Terme (central Italy). J Cave Karst Stud 72(1):43–58

    Article  Google Scholar 

  • García Palomo A, Macías JL, Espíndola JM (2004) Strike-slip faults and K-alkaline volcanism at El Chichón volcano, southeastern Mexico. J Volcanol Geotherm Res 136:247–268

    Article  Google Scholar 

  • Gary MO, Sharp JM (2006) Volcanogenic karstification of Sistema Zacatón, Mexico. Geol Soc Am Spec Pap 404:79–89

    Google Scholar 

  • Gunn J, Bottrell SH, Lowe DJ, Worthington SRH (2006) Deep groundwater flow and geochemical processes in limestone aquifers: evidence from thermal waters in Derbyshire, England, UK. Hydrogeol J 14:868–881

    Article  Google Scholar 

  • Hill CA (1995) H2S-related porosity and sulfuric acid oil-field karst. In: Budd DA, Saller AH, Harris PM (eds) Unconformities and porosity in carbonate strata. Am Assoc Pet Geol Mem 63:301–306

  • Hose LD, Macalady JL (2006) Observations from active sulfidic karst systems: is the present the key to understanding Guadalupe Mountain speleogenesis? NM Geol Soc Guidebook, 57th Field Conference, Caves and Karst of southeastern New Mexico, NM Geol Soc, Socorro, NM, pp 185–194

  • Hose LD, Palmer AN, Palmer MV, Northup DN, Boston PJ, DuChene H (2000) Microbiology and geochemistry in a hydrogen-sulphide-rich karst environment. Chem Geol 169:399–423

    Article  Google Scholar 

  • INEGI (1983a) Carta Geológica escala 1:250,000 Villahermosa E15-8 [Geologic map scale 1:250,000], 1st edn. INEGI, Aguascalientes, Mexico

  • INEGI (1983b) Carta Hidrológica de Aguas Superficiales 1:250,000 Villahermosa E15-8 [Hydrologic map of surface water scale 1:250,000], 1st edn. INEGI, Aguascalientes, Mexico

  • INEGI (2004) Carta Topogáfica escala 1:250,000 Villahermosa E15-8 [Topographic map scale 1:250,000], 2nd edn. INEGI, Aguascalientes, Mexico

  • Islas-Tenorio JJ, Gómez-Áviles A, Ramírez-García MG, Moreno-Ruíz JP (2004) Informe final: carta geológico-minera Villahermosa E15-8, escala 1:250,000 [Final report: geologic-mineral resources map Villahermosa, scale 1:250,000], Estados de Veracruz, Tabasco, Chiapas y Oaxaca, Consejo de Recursos Minerales , Secretaría de Economía, Mexico City, 80 pp. http://mapserver.sgm.gob.mx/cartas_impresas/productos/cartas/cartas250/geologia/pdf/106_E15-8_GM.pdf. Accessed April 2014

  • Klimchouk A (2007) Hypogene speleogenesis: hydrogeological and morphogenetic perspective. Natl. Speleological Soc., Huntsville, AL

  • Krauskopf KB (1956) Dissolution and precipitation of silica at low temperatures. Geochim Cosmochim Acta 10:1–26

    Article  Google Scholar 

  • Lachniet MS, Patterson WP (2006) Use of correlation and stepwise regression to evaluate physical controls on the stable isotope values of Panamanian rain and surface waters. J Hydrol 324:115–140

    Article  Google Scholar 

  • Land LS, Prezbindowski DR (1982) The origin and evolution of saline formation water, lower cretaceous carbonates, south-central Texas, U.S.A. Dev Water Sci 16:51–74

  • Lee W, Lewandowski Z, Nielsen PH, Hamilton WA (1995) Role of sulfate-reducing bacteria in corrosion of mild steel: a review. Biofouling 8:165–194

    Article  Google Scholar 

  • Lovley DR, Chapelle FH (1995) Deep subsurface microbial processes. Rev Geophys 33:365–381

    Article  Google Scholar 

  • Ma R, Yanxin W, Ziyong S, Chunmiao Z, Teng M, Henning P (2011) Geochemical evolution of groundwater in carbonate aquifers in Taiyuan, northern China. Appl Geochem 26:884–897

    Article  Google Scholar 

  • Macalady JL, Lyon EH, Koffman B, Albertson LK, Meyer K, Galdenzi S, Mariani S (2006) Dominant microbial populations in limestone-corroding stream biofilms, Frasassi Cave System, Italy. Appl Environ Microbiol 72(8):5596–5609

    Google Scholar 

  • Macalady JL, Dattagupta S, Schaperdoth I, Druschel GK, Eastman D (2008) Niche differentiation among sulfur- oxidizing bacterial populations in cave waters. ISME J 2(6):590–601

  • Machel HG (2001) Bacterial and thermochemical sulfate reduction in diagenetic settings: old and new insights. Sediment Geol 140:143–175

    Article  Google Scholar 

  • Macur RE, Langner HW, Kocar BD, Inskeep WP (2013) Microbial community structure and sulfur biogeochemistry in mildly-acidic sulfidic geothermal springs in Yellowstone National Park. Geobiology 11:86–99

  • Mazor E (1991) Chemical and isotopic groundwater hydrology, the applied approach, 2nd edn. Dekker, New York, 451 pp

    Google Scholar 

  • McIntosh JC, Walter LM, Martini M (2000) Pleistocene recharge to midcontinent basins: effects on salinity structure and microbial gas generation. Geochim Cosmochim Acta 66(10):1681–1700

    Article  Google Scholar 

  • Meneses-Rocha JJ (1985) Tectonic evolution of the Strike-slip Fault province of Chiapas, Mexico. MSc Thesis, Univ. of Texas at Austin, USA, 315 pp

  • Meneses-Rocha JJ (2001) Tectonic evolution of the Ixtapa graben,an example of a strike-slip basin in southeastern Mexico: implications for regional petroleum systems. In: Bartolini C, Buffler RT, Cantú Chapa A (eds) The western Gulf of Mexico Basin: tectonics, sedimentary basins, and petroleum systems, vol 75. Am Assoc Pet Geol Mem, AAPG, Tulsa, OK, pp 183–216

  • Meyer B (1977) Sulfur, energy and environment. Elsevier, Amsterdam, 448 pp

    Google Scholar 

  • Minissale A, Vaselli O (2011) Karst springs as “natural” pluviometers: constraints on the isotopic composition of rainfall in the Apennines of central Italy. Appl Geochem. doi:10.1016/j.apgeochem.2011.02.005

    Google Scholar 

  • Mitrofan H, Povară I (2000) Methods for assessing the hydrogeological disarray associated to a reservoir dam built in a geologically complicated area. Fragile territory: research and application on hydrogeological disarray in the world. 10th Int. Cong. Geol., Rome, December 2000, pp 33–38

  • Nelson ST, Dettman D (2001) Improving hydrogen isotope ratio measurements for on-line chromium reduction systems. Rapid Commun Mass Spectrom 15:2301–2306

    Article  Google Scholar 

  • Nencetti A, Tassi F, Vaselli O, Macías JL, Magro G, Capaccioni B, Minissale A, Mora JC (2005) Chemical and isotopic study of thermal springs and gas discharges from Sierra de Chiapas, Mexico. Geofis Int 44:39–48

    Google Scholar 

  • Palacios-Vargas JG (2009) Los Estudios Bioespeleológicos de la Cueva de Villa Luz y sus perspectivas [Biospeleogical studies of Cueva de Villa Luz and their perspectives]. Mundos Subterrán 20:22–26

  • Palmer AN (2007) Cave geology. Cave Books, Dayton, OH, 454 pp

    Google Scholar 

  • Palmer AN, Palmer MV (1998) Geochemistry of Cueva De Villa Luz, Mexico, an active H2S cave. J Cave Karst Stud 60:188

  • Piper AM (1953) A graphic procedure in the geochemical interpretation of water analysis. Trans Am Geophys Union 25(6):914–928

  • Plan L, Tschegg C, De Waele J, Spötl C (2012) Corrosion morphology and cave wall alteration in an Alpine sulfuric acid cave (Kraushöhle, Austria). Geomorphology 169(170):45–54

    Article  Google Scholar 

  • Polyak VJ, Provencio PP (2000) Summary of the timing of sulfuric-acid speleogenesis for Guadalupe caves based on the ages of alunite. J Cave Karst Stud 62(2):72–74

    Google Scholar 

  • Polyak VJ, Provencio PP (2001) By-product materials related to H2S–H2SO4 influenced speleogenesis of Carlsbad, Lechuguilla, and other caves of the Guadalupe Mountains, New Mexico. J Cave Karst Stud 63:23–32

    Google Scholar 

  • Povară I, Simion G, Marin M (2008) Thermomineral waters from the Cerna Valley Basin (Romania). Studia Universitatis Babeş-Bolyai, Geologia 53(2):41–54

    Article  Google Scholar 

  • Ramos-López AE (2003) Aplicación de un índice de calidad para cuerpos de agua del Estado de Tabasco, México [Application of a quality index for the water bodies of Tabasco State, Mexico]. BA Thesis, Universidad Juárez Autónoma de Tabasco, Villahermosa, Mexico

  • Randall KW (2006) Assessing the potential impact of microbes in the Edwards and the Trinity aquifers of central Texas, MSc Thesis, Louisiana State University, 108 pp

  • Rosales-Lagarde L (2012) investigation of karst brackish-sulfidic springs and their role in the hydrogeology, subsurface water–rock interactions, and speleogenesis at northern Sierra de Chiapas, Mexico. PhD Thesis, New Mexico Institute of Mining and Technology, Socorro, NM

  • Rye RO, Back W, Hanshaw BB, Rightmire CT, Pearson FJ (1981) The origin and isotopic composition of dissolved sulfide in groundwater from carbonate aquifers in Florida and Texas. Geochim Cosmochim Acta 45:1941–1950

    Article  Google Scholar 

  • Salazar-Conde E, Zavala Cruz J, Castillo Acosta O, Cámara Artigas R (2004) Evaluación espacial y temporal de la vegetación de la Sierra Madrigal, Tabasco, México (1973–2003) [Spatial and temporal evaluation of the vegetation at Sierra Madrigal]. Investigaciones Geográficas, Bol Inst Geografía, UNAM 54:7–23

    Google Scholar 

  • Santiago J, Baro A (1992) Mexico’s giant oil fields 1978–1988 decade. In: Halbouty MT (ed) Giant oil and gas fields of the decade 1978–1988. Am Assoc Pet Geol Mem 54:73–99

    Google Scholar 

  • Sasowsky ID, Feazel CT Mylroie JE, Palmer AN, Palmer MV (2008) Karst from recent to reservoirs. Karst Waters Institute Spec Publ 14, Karst Waters Institute, Leesburg, VA, 221 pp

  • Satoh H, Odagiri M, Ito T, Ocabe S (2009) Microbial community structures and in situ sulfate-reducing and sulfur-oxidizing activities in biofilms developed on mortar specimens in a corroded sewer system. Water Res 43:4729–4739

    Article  Google Scholar 

  • Sharp Z (2007) Principles of Stable Isotope Geochemistry. Prentice Hall, Upper Saddle River, NJ, 344 pp

    Google Scholar 

  • Skirnisdottir S, Hreggvidsson GO, Hjörleifsdottir S, Marteinsson VT, Petursdottir SK, Holst O, Kristjansson JK (2000) Influence of sulfide and temperature on species composition and community structure of hot spring microbial mats. Appl Environ Microbiol 66(7):2835

    Article  Google Scholar 

  • Smith BA, Gary RH, Hunt PG (2009) Recharge and discharge features of the Edwards and Trinity aquifers, central Texas. Fieldtrip guidebook, Karst Horizons, 15th International Congress of Speleology, Kerrville, TX, July 22, 2009

  • Spilde MN, Fischer TP, Northup DE (2004) Water, gas, and phylogenetic analyses from sulfur springs in Cueva de Villa Luz, Tabasco, México Geol Soc Am Abst 36(5):106–111

  • Stein A, Bailey SM (2013) Redox biology of hydrogen sulfide: implications for physiology, pathophysiology, and pharmacology. Redox Biol 1:32–39

    Article  Google Scholar 

  • Stoessell RK (1992) Effects of sulfate reduction on CaCO3 dissolution and precipitation in mixing-zone fluids. J Sediment Petrol 62:873–880

    Google Scholar 

  • Stoessell RK, Moore YH, Coke JG (1993) The occurrence and effect of sulfate reduction and sulfide oxidation on coastal limestone dissolution in Yucatan Cenotes. Groundwater 31(4):566–575

    Article  Google Scholar 

  • Stumm W, Morgan JJ (1996) Aquatic chemistry: chemical equilibria and rates in natural waters, vol 3. Wiley, New York, 1022 pp

    Google Scholar 

  • Summers-Engel A (2007) Observations on the biodiversity of sulfidic karst habitats. J Cave Karst Stud 69:187–206

    Google Scholar 

  • Summers-Engel A, Lee N, Porter ML, Stern LA, Bennett PC, Wagner M (2003) Filamentous “Epsilonproteobacteria” dominate microbial mats from sulfidic cave springs. Appl Environ Microbiol 69(9):5503–5511

  • Summers-Engel A, Stern LA, Bennett PC (2004) Microbial contributions to cave formation: new insights into sulfuric acid speleogenesis. Geology 32(5):369–372

    Article  Google Scholar 

  • Taran Y, Rouwet D, Inguaggiato S, Aiuppa A (2008) Major and trace element geochemistry of neutral and acidic thermal springs at El Chichón volcano, Mexico: implications for monitoring of the volcanic activity. J Volcanol Geotherm Res 178:224–236

    Article  Google Scholar 

  • Tobler M, Schlupp I, Heubel KU, Riesch R, García de León FJ, Giere O, Plath M (2006) Life on the edge: hydrogen sulfide and the fish communities of a Mexican cave and surrounding waters. Extremophiles 10:577–585

    Article  Google Scholar 

  • Tobler M, DeWitt TJ, DeWitt TJ, Schlupp I, García de León FJ, Herrmann R, Feulner PGD, Riedemann R, Plath M (2008) Toxic hydrogen sulfide and dark caves: phenotypic and genetic divergence across two abiotic environmental gradients in Poecilia mexicana. Evolution 62:2643–2658

    Article  Google Scholar 

  • Tóth J (1980) Cross-formational gravity-flow of groundwater: a mechanism of the transport and accumulation of petroleum (the generalized hydraulic theory of petroleum migration). Am Assoc Pet Geol Stud Geol 10:121–167

  • Tóth J (1999) Groundwater as a geologic agent: an overview of the causes, processes, and manifestations. Hydrogeol J 7:1–14

    Article  Google Scholar 

  • United States Department of the Interior Bureau of Reclamation (2001) Water measurement manual. A water resources technical publications available via the Hydraulic Investigations Group at: http://www.usbr.gov/pmts/hydraulics_lab/pubs/wmm/. Accessed February 7, 2014

  • Vesper DJ, Grand RV, Ward K, Donovan JJ (2009) Geochemistry of a spring-dense karst watershed located in a complex structural setting, Appalachian Great Valley, West Virginia, USA. Environ Geol 58:667–678

    Article  Google Scholar 

  • Wells PRA (1988) Hydrodynamic trapping in the Cretaceous Nahr-Umr Lower Sand of the North area, offshore Qatar. J Petrol Technol 40:357–362

    Article  Google Scholar 

  • White WB (2010) Springwater geochemistry. In: Kresic N, Stevanovic Z (eds) Groundwater hydrology of springs, engineering, theory, management, and sustainability. Elsevier, Amsterdam, pp 231–268

  • Wynn JG, Sumrall JB, Onac BP (2010) Sulfur isotopic composition and the source of dissolved sulfur species in thermo-mineral springs of the Cerna Valley, Romania. Chem Geol 271:31–43

    Article  Google Scholar 

Download references

Acknowledgements

The results in this report are part of the requirements to fulfill the first author’s PhD in Geology at the New Mexico Institute of Mining and Technology. Support by Consejo Nacional de Ciencia y Tecnología (scholarship to Laura Rosales-Lagarde) and by the National Cave and Karst Research Institute were indispensable to accomplish this investigation. Partial funding for this research was provided by the Matuszeski Grant, the Anita and Anton Budding Research Grant, and the Graduate Student Association Travel Grant from New Mexico Tech. National Geographic Society Research and Exploration Committee funded field research prior to 2005. This investigation was greatly facilitated by the support and information from PEMEX Exploración y Producción Zona Sur, Consejo Nacional del Agua Villahermosa, Instituto Nacional de Geografía e Historia Villahermosa and Secretaría de Agua Potable y Alcantarillado del Estado de Tabasco. Support from Dr. Javier Meneses Rocha was critical for the development of this project. Javier Baez provided useful information on the location of some springs. Authorities from the Tacotalpa and Teapa municipalities, from the local towns, and the region inhabitants provided permissions and greatly facilitated the realization of field work. Field assistance by Kevin W. Stafford and by Chris Moya was indispensable. Members of the Caves of Tabasco Project (National Speleological Society) provided invaluable information and support. Bonnie Frey and Dustin Baca’s assistance in the lab was crucial. The quality of this manuscript has improved considerably thanks to the comments of Simon H. Bottrell, Vincent Post, Martin Appold, Paul Burger and two anonymous reviewers. This report was enhanced by reviews from Maya El Hariri, Marty Frisbee, Dana Ulmer-Scholle, Peter Scholle, Amy Luther, Shasta Marrero, and Karen Karen.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laura Rosales Lagarde.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rosales Lagarde, L., Boston, P.J., Campbell, A.R. et al. Hydrogeology of northern Sierra de Chiapas, Mexico: a conceptual model based on a geochemical characterization of sulfide-rich karst brackish springs. Hydrogeol J 22, 1447–1467 (2014). https://doi.org/10.1007/s10040-014-1135-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10040-014-1135-z

Keywords

Navigation