Skip to main content
Log in

Optimizing groundwater monitoring systems for landfills with random leaks under heterogeneous subsurface conditions

Optimisation des dispositifs de surveillance des eaux souterraines sous des décharges à fuites aléatoires sur sub-surface hétérogène

Optimización de sistemas de monitoreo de agua subterránea para rellenos sanitarios con filtraciones aleatorias bajo condiciones subsuperficiales heterogéneas

الاستفادةالمثلىمنأنظمةرصدالمياهالجوفيةعندمدافنالنفاياتمنمصدرتسريباتعشوائي فيظلظروفغيرمتجانسةللتكويناتالجيولوجيهتحتسطحالأرض

非均质地下条件下随机泄漏垃圾填埋场的地下水监测系统优化

Optimização dos sistemas de monitorização de água subterrânea em aterros com fugas aleatórias em condições subsuperficiais heterogéneas

  • Paper
  • Published:
Hydrogeology Journal Aims and scope Submit manuscript

Abstract

Landfills are one of the most common human activities threatening the natural groundwater quality. The landfill may leak, and the corresponding plumes may contaminate an area, entailing costly remediation measures. The objective of the installation of monitoring systems at landfill sites is to detect the contaminant plumes before they reach the regulatory compliance boundary in order to enable cost-effective counter measures. In this study, a classical decision analysis approach is linked to a stochastic simulation model to determine the optimal groundwater monitoring system given uncertainties due to the hydrogeological conditions and contaminant source characteristics. A Monte Carlo approach is used to incorporate uncertainties. Hydraulic conductivity and the leak location are the random inputs of the simulation model. The design objectives are to: (1) maximize the detection probability, (2) minimize the area of contamination at the time of detection, and (3) minimize the total cost of the monitoring system. A synthetic test case based on a real-world case in the Netherlands is analyzed. The results show that monitoring systems located close to the source are optimal except for the cases with very high unit installation and sampling cost and/or very cheap unit remediation.

Résumé

Les décharges sont une des activités humaines les plus communes mettant en péril la qualité des eaux souterraines naturelles. La décharge peut fuir et les panaches correspondant peuvent contaminer une zone, entraînant des mesures de remédiation coûteuses. L’objectif de l’installation de systèmes de surveillance sur des sites de décharges est de détecter les panaches de contaminants avant qu’ils n’atteignent la limite de qualité réglementaire afin que des contre-mesures d’un bon rapport coût-performance puissent être mises en œuvre. Dans cette étude, une approche classique d’analyse de décision est associée à un modèle de simulation stochastique pour déterminer le système optimal de surveillance des eaux souterraines étant données les incertitudes dues aux conditions hydrogéologiques et aux caractéristiques de la source de contamination. Une approche de Monte Carlo est utilisée pour intégrer les incertitudes. La perméabilité et la localisation de la fuite sont les entrées aléatoires du modèle de simulation. Les objectifs du dispositif sont de : (1) maximiser la probabilité de détection, (2) de minimiser la surface contaminée et le délai de détection, et (3) minimiser le coût total du système de surveillance. Un cas-test synthétique, basé sur un cas réel aux Pays-Bas, est analysé. Les résultats montrent que les systèmes de surveillance proches de la source de contamination sont optimaux sauf dans le cas de coût très élevé d’installation et de prélèvement et/ou d’une unité de remédiation très bon marché.

Resumen

Los rellenos sanitarios son una de las actividades humanas más comunes que amenazan la calidad natural del agua subterránea. El relleno sanitario puede filtrar, y las plumas correspondientes pueden contaminar un área, implicando costosas medidas de remediación. El objetivo de la instalación de sistemas de monitoreo en sitios de relleno sanitario es detectar las plumas contaminantes antes de que ellos alcancen los límites regulatorios de las norma para permitir contramedidas de costos razonables. En este estudio se vincula un enfoque de análisis de decisión clásica a un modelo de simulación estocástica para determinar el sistema óptimo de monitoreo de agua subterránea dada las incertidumbres debido a las condiciones hidrogeológicas y a las características de las fuentes contaminantes. Se usó un enfoque de Monte Carlo para incorporar incertidumbres. La conductividad hidráulica y la localización de la filtración son las entradas aleatorias del modelo de simulación. Los objetivos de diseño son para: (1) maximizar la probabilidad de detección, (2) minimizar el área de contaminación al tiempo de su detección, y (3) minimizar el costo total del sistema de monitoreo. Se analiza un caso de prueba sintética basado en un caso real en Holanda. Los resultados muestran que los sistemas de monitoreo localizados cerca a la fuente son óptimos excepto para los casos con muy alto costos unitarios de instalación y instalación y/o muy bajo costo unitario de remediación.

الملخص

مرادمالنفاياتهيواحدةمنالأنشطةالأكثرشيوعاللإنسانوالتيتهددنوعيةالمياهالجوفيةالطبيعية.وقدتتسربالملوثاتمنالمدافنوبالتاليتسببتلوثالمنطقةالمحيطهوتكونعمليهالمعالجةمكلفة.الهدفمنوضعنظمأبارلرصدالملوثاتفيمواقعدفنالنفاياتهوالكشفعنهذهالملوثاتقبلوصولهاإلىالحدودالمخططلعدمتجاوزهاوامكانيهالقيامبطريقهاقتصاديهوفعالهلمكافحهالتلوث. فيهذهالدراسة،تماتباعنهجتحليلالقراربالطريقهالكلاسيكيةوربطهمعنموذجلمحاكاةالمياهالجوفيهونقلالملوثاتومعافتراضحدوثالتسرباتبطريقهعشوائيهولتحديدنظامأمثللمراقبةالمياهالجوفيةاخذينفيالاعتبارعدماليقينبسببالظروفالهيدروجيولوجيةوموقعالتسربداخلالمدفن.تماستخدامطريقهمونتكارلولمعالجهعدماليقين.وكانالتوصيلالهيدروليكيوموقعالتسربداخلالمدفنهماالمدخلاتعشوائيةفينموذجالمحاكاة.وكانمنأهدافتصميمشبكهالرصدهو:)1(تعظيماحتمالكشفالملوثات،و)2(تقليلمنطقةالتلوثفيوقتالكشف،و)3(تقليلالتكلفةالإجماليةلنظامالرصد.ولقدتمدراسهوتحليلحالةاصطناعيةمبنيهعليأساسحالةواقعيهفيهولندا.وأظهرتالنتائجأنأنظمةالرصدالتيتقععلىمقربةمنمصدرالنفاياتهيالأمثلباستثناءالحالاتالتييكونفيهاتكلفهوحدةتركيبأبارالرصدعاليةجداوكذلكتكلفهوحدةأخذالعيناتومعأوبدونوحدةمعالجةذاتتكلفهرخيصةجدا.

摘 要

垃圾填埋是威胁天然地下水质量最常见的人类活动之一。垃圾填埋发生泄漏形成的污染羽能够污染一定的区域,其修复措施成本高昂。在垃圾填埋场安装监测系统的目的就在于污染羽超出规定界限前得到发现,得以确定经济合理的应对措施。本研究将经典的决策分析方法与随机仿真模型联用,以优化地下水监测系统,该系统由于水文地质条件和污染源特征而具有不确定性。我们选用蒙特卡罗方法整合本系统的不确定性,将渗透系数和泄漏位置作为模拟模型的随机输入参数。设计内容包括:(1)检测概率的最大化;(2)监测时段污染区域的最小化;(3)监测系统总成本的最小化。并将本系统应用于荷兰真实的综合实验案例。结果表明, 除了高昂的安装和取样费用和/或低廉的修复费用,靠近污染源的监测系统是最佳的.

Resumo

Os aterros são uma das actividades humanas que mais frequentemente ameaçam a qualidade da água subterrânea. Os aterros podem ter fugas e as respectivas plumas podem contaminar uma área, o que implica medidas de remediação custosas. O objetivo da instalação de sistemas de monitorização em áreas de aterros é a detecção de plumas de contaminação antes de estas alcançarem o limiar de normativas legais, de modo a permitir a implementação de medidas corretivas com custo eficaz. Neste estudo, um método clássico de análise de decisões está ligado a um modelo estocástico de simulação para determinar o sistema óptimo de monitorização da água subterrânea, tendo em conta as incertezas associadas às condições hidrogeológicas e às características da fonte de contaminação. É usado o método de Monte Carlo para incorporar incertezas. A condutividade hidráulica e a localização das fugas são as variáveis de entrada aleatória do modelo de simulação. Os objetivos projetados são: (1) maximizar a probabilidade de deteção, (2) minimizar a área de contaminação no momento da deteção e (3) minimizar o custo total do sistema de monitorização. É analisado um caso piloto sintético baseado numa situação real nos Países Baixos. Os resultados indicam que os sistemas de monitorização localizados próximo da fonte são óptimos, excepto nos casos de custos unitários muito elevados de instalação e de amostragem e/ou custos unitários muito baixos da remediação.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Ababou R, McLaughlin D, Gelhar LW, Tompson AFB (1989) Numerical simulation of three-dimensional saturated flow in randomly heterogeneous porous media. Transport Porous Media 4(6):549–565

    Article  Google Scholar 

  • Abu-Rukah Y (2005) Study of colloidal content and associated heavy metals in landfill leachate: a case study of El-Akader landfill site—Jordan. Int J Environ Pollut 23(2):205–214

    Google Scholar 

  • Bear J (1972) Dynamics of fluid in porous media. Elsevier, New York

    Google Scholar 

  • Bellin A, Saladin P, Rinaldo A (1992) Simulation of dispersion in heterogeneous porous formations: statistics, first-order theories, convergence of computations. Water Resour Res 28(9):2211–2227

    Article  Google Scholar 

  • Ben-Zvi M, Berkowitz B, Kesler S (1988) Pre-posterior analysis as a tool for data evaluation: application to aquifer contamination. Water Resour Manag 2(1):11–20

    Article  Google Scholar 

  • Boggs JM, Young ST, Beard LM, Gelhar W, Rehfeldt KR, Adams EE (1992) Field study in a heterogeneous aquifer: 1. overview and site description. Water Resour Res 28(12):3218–3291

    Google Scholar 

  • Chen PH, Wang CY (1997) Investigation into municipal waste leachate in the unsaturated zone of red soil. Environ Int 23:237–245

    Article  Google Scholar 

  • Cirpka OA, de Barros FPJ, Chiogna G, Rolle M, Nowak W (2011) Stochastic flux-related analysis of transverse mixing in two-dimensional heterogeneous porous media. Water Resour Res 47, doi:10.1029/2010WR010279

  • Cirpka OA, Rolle M, Chiogna M, de Barros FPJ, Nowak W (2012) Stochastic evaluation of mixing-controlled steady-state plume lengths in two-dimensional heterogeneous domains. J Cont Hydrol 138–139:22–39

    Article  Google Scholar 

  • Elfeki AMM (1996) Stochastic characterization of geological heterogeneity and its impact on groundwater contaminant transport. PhD Thesis, Delft University of Technology, the Netherlands

    Google Scholar 

  • European Community Council (ECC) (1999) Directive on the landfill of waste. Official J L

  • Feyen L, Gorelick SM (2005) Framework to evaluate the worth of hydraulic conductivity data for optimal groundwater resources management in ecologically sensitive areas. Water Resour Res 41:W03019. doi:10.1029/2003WR002901

    Article  Google Scholar 

  • Freeze RA, Massmann J, Smith L, Sperling A, James B (1990) Hydrogeological decision analysis: 1. a framework. Ground Water 28(5):738–766

    Article  Google Scholar 

  • Freeze RA, James B, Massmann L, Sperling A, Smith J (1992) Hydrogeological decision analysis: 4. the concept of data worth and its use in the development of site investigation strategies. Ground Water 30(4):574–588

    Article  Google Scholar 

  • Freyberg DL (1986) A natural gradient experiment on solute transport in a sand aquifer: 2. spatial moments and the advection and dispersion of nonreactive tracers. Water Resour Res 22(13):2031–2036

    Article  Google Scholar 

  • Gelhar LW (1986) Stochastic subsurface hydrology from theory to applications. Water Resour Res 22(9S):135S–145S

    Article  Google Scholar 

  • Gorelick SM, Freeze RA, Donohue D and Keely JF (1993) Groundwater contamination optimal capture and containment. CRC, Boca Raton, FL, 416 pp

  • Hudak PF (2001) Effective contaminant detection networks in uncertain groundwater flow fields. Waste Manage 21(4):309–312

    Article  Google Scholar 

  • Hudak PF (2002) Efficiency comparison of graphical approaches for designing contaminant detection networks in groundwater. Water Resour Res 38:181–185

    Article  Google Scholar 

  • Hudak PF (2005) Sensitivity of groundwater monitoring networks to contaminant source width for various seepage velocities. Water Resour Res 41(8):W08501

    Article  Google Scholar 

  • Hudak PF, Loaiciga HA (1993) An optimization method for monitoring network design in multilayered ground water flow systems. Water Resour Res 29(8):2835–2845

    Article  Google Scholar 

  • James BR, Gorelick SM (1994) When enough is enough: the worth of monitoring data in aquifer remediation design. Water Resour Res 30(12):3499–3513

    Article  Google Scholar 

  • Jardine K, Smith L, Clemo T (1996) Monitoring networks in fractured rocks: a decision analysis approach. Ground Water 34(4):504–518

    Article  Google Scholar 

  • Kinzelbach W (1986) Groundwater modeling: an introduction with sample programs in BASIC. Dev Water Sci 25:333

    Google Scholar 

  • Kjeldsen P, Bjerg PL, Winther P, Rugge K, Pedersen KJ, Skov B, Foverskov A, Christensen TH (1995) Assessment of spatial variability in leachate migration from an old landfill site, Proceedings of the Prague Conference on Groundwater Quality: Remediation and Protection, May 1995, Prague, pp 365–373

  • Koliopoulus TC, Kollias VP, Kollias PS (2003) Modelling the risk assessment of groundwater pollution by leachates and landfill gases. In: Water pollution VII: modelling, measuring and prediction. (Progress in Water Resources), vol 9. WIT Press, Wessex, UK, pp 159–169

  • Loaiciga HA, Charbeneau RJ, Everett LG, Fogg GE, Hobbs BF, Rouhani S (1992) Review of ground-water quality monitoring network design. J Hydraul Eng 118(1):11–37

    Article  Google Scholar 

  • Mahar PS, Datta B (1997) Optimal monitoring network and groundwater pollution source identification. J Water Resour Plan Manage 123(4):199–207

    Article  Google Scholar 

  • Massmann J, Freeze RA (1987a) Groundwater contamination from waste management sites: the interaction between risk-based engineering design and regulatory policy. 1. Methodology. Water Resour Res 23(2):351–367

    Article  Google Scholar 

  • Massmann J, Freeze RA (1987b) Groundwater contamination from waste management sites: the interaction between risk-based engineering design and regulatory policy. 2. Results, Water Resour Res 23(2):368–380

    Article  Google Scholar 

  • Massmann J, Freeze RA, Smith L, Sperling T, James B (1991) Hydrogeological decision analysis: 2. applications to groundwater contamination. Ground Water 29(4):536–548

    Article  Google Scholar 

  • Marin CM, Medina MA Jr, Butcher JB (1989) Monte Carlo analysis and Bayesian decision theory for assessing the effects of waste sites on groundwater I: theory. J Contam Hydrol 5(1):1–13

    Article  Google Scholar 

  • Meyer PD, Valocchi AJ, Eheart JW (1994) Monitoring network design to provide initial detection of groundwater contamination. Water Resour Res 30(9):2647–2659

    Article  Google Scholar 

  • Moltyaner GL, Klukas MH, Wills AC, Killey WD (1993) Numerical simulation of Twin Lake natural-gradient tracer tests: a comparison of methods. Water Resour Res 29(10):3433–3452

    Article  Google Scholar 

  • Montas HJ, Mohtar RH, Hassan AE, AlKhal F (2000) Heuristic space–time design of monitoring wells for contaminant plume characterization in stochastic flow fields. J Contam Hydrol 43(3–4):271–301

    Article  Google Scholar 

  • Nowak W, Rubin Y, de Barros FPJ (2012) A hypothesis-driven approach to optimize field campaigns, Water Resour Res 48. doi:10.1029/2011WR011016

  • Papapetridis K, Paleologos EK (2011) Contaminant detection probability in heterogeneous aquifers and corrected risk analysis for remedial response delay. Water Resour Res 47:W10518. doi:10.1029/2011WR010652

    Article  Google Scholar 

  • Papapetridis K, Paleologos EK (2012) Sampling frequency of groundwater monitoring and re-mediation delay at contaminated sites. Water Resour Manage 26(9):2673–2688. doi:10.1007/s11269-012-0039-8

    Article  Google Scholar 

  • Riediker S, Suter JFM, Giger W (2000) Benzene and naphthalene sulfonates in leachates and plumes of landfills. Water Resour 34(7):2069–2079

    Google Scholar 

  • Rouhani S, Hall TJ (1988) Geostatistical schemes for groundwater sampling. J Hydrol 103(1–2):85–102

    Article  Google Scholar 

  • Rubin Y (1990) Stochastic modeling of macrodispersion in heterogeneous porous media. Water Resour Res 26(1):133–141

    Article  Google Scholar 

  • Sperling T, Freeze RA, Massmann J, Smith L, James B (1992) Hydrogeological decision analysis: 3. application to design of a ground-water control system at an open pit mine. Ground Water 30(3):376–389

    Article  Google Scholar 

  • Storck P, Eheart JW, Valocchi AJ (1997) A method for optimal location of monitoring wells for detection of groundwater contamination in three-dimensional heterogeneous aquifers. Water Resour Res 33(9):2081–2088

    Article  Google Scholar 

  • Trainor-Guitton WJ, Caers JK, Mukerji T (2011) A methodology for establishing a data reliability measure for value of spatial information problems. Math Geosci 43:929–949. doi:10.1007/s11,004-011-9367-0

    Article  Google Scholar 

  • US Environmental Protection Agency (USEPA) (1986) RCRA groundwater monitoring technical enforcement guidance document. USEPA, Washington, DC

  • Yenigül NB (2006) Groundwater detection monitoring system design under conditions of uncertainty. PhD Thesis, Eburon, Delft, the Netherlands

    Google Scholar 

  • Yenigül NB, Elfeki AMM, Gehrels JC, van den Akker C, Hensbergen AT, Dekking FM (2005) Reliability assessment of groundwater monitoring networks at landfill sites. J Hydrol 308(1–4):1–17

    Article  Google Scholar 

  • Yenigül NB, Hensbergen AT, Elfeki AMM, Dekking FM (2011) Detection of contaminant plumes released from landfills: numerical versus analytical solutions. Environ Earth Sci 64(8):2127–2140

    Article  Google Scholar 

Download references

Acknowledgements

The useful remarks by Wolfgang Nowak about this work are highly appreciated. The financial support by DIOC Water of the Delft University of Technology and International Consulting and Engineering Company Tauw for this research is gratefully acknowledged. A.M.M. Elfeki is currently on leave from the Irrigation and Hydraulics Dept., Faculty of Engineering, Mansoura University, Mansoura, Egypt.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. M. Dekking.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yenigül, N.B., Elfeki, A.M.M., van den Akker, C. et al. Optimizing groundwater monitoring systems for landfills with random leaks under heterogeneous subsurface conditions. Hydrogeol J 21, 1761–1772 (2013). https://doi.org/10.1007/s10040-013-1013-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10040-013-1013-0

Keywords

Navigation