Skip to main content
Log in

Analysis of groundwater flow in arid areas with limited hydrogeological data using the Grey Model: a case study of the Nubian Sandstone, Kharga Oasis, Egypt

Analyse du débit de nappe souterraine dans une zone aride avec des données hydrogéologiques limitées utilisant le Modèle de Grey: étude de cas du Grès Nubien, oasis de Kharga, Egypte

Análisis de flujo de agua subterránea en áreas áridas con datos hidrogeológicos limitados usando el modelo Grey: un caso de estudio de las Areniscas de Nubian, Oasis de Kharga, Egipto

Análise do fluxo das águas subterrâneas em zonas áridas com dados hidrogeológicos limitados usando o Modelo Cinza: um estudo de caso do Arenito Núbio, Oásis Kharga, Egito

  • Paper
  • Published:
Hydrogeology Journal Aims and scope Submit manuscript

Abstract

Management of groundwater resources can be enhanced by using numerical models to improve development strategies. However, the lack of basic data often limits the implementation of these models. The Kharga Oasis in the western desert of Egypt is an arid area that mainly depends on groundwater from the Nubian Sandstone Aquifer System (NSAS), for which the hydrogeological data needed for groundwater simulation are lacking, thereby introducing a problem for model calibration and validation. The Grey Model (GM) was adopted to analyze groundwater flow. This model combines a finite element method (FEM) with a linear regression model to try to obtain the best-fit piezometric-level trends compared to observations. The GM simulation results clearly show that the future water table in the northeastern part of the study area will face a severe drawdown compared with that in the southwestern part and that the hydraulic head difference between these parts will reach 140 m by 2060. Given the uncertainty and limitation of available data, the GM produced more realistic results compared with those obtained from a FEM alone. The GM could be applied to other cases with similar data limitations.

Résumé

Une gestion des ressources en eau souterraines peut être optimisée en utilisant des modèles numériques pour améliorer les stratégies de développement. Toutefois, le manque de données de base limite souvent la mise en œuvre de ces modèles. L’oasis de Kharga dans l’Ouest du désert égyptien est une zone aride qui dépend principalement du système aquifère du Grès Nubien (NSAS), pour lequel les données hydrogéologiques requises pour la simulation de nappe manquent, introduisant par là un problème de calibration et de validation des modèles. Le Modèle de Grey (GM) a été adopté pour analyser le débit de nappe souterraine. Ce modèle combine une méthode par éléments finis (FEM) avec un modèle de régression linéaire pour essayer d’obtenir la meilleure correspondance avec les niveaux piézométriques observés. Les résultats de la simulation GM montrent clairement que la future surface libre de la nappe dans la partie Nord-Est de l’étude va faire face à un sévère étiage comparativement à celle de partie Sud-Ouest et que la différence piézométriques atteindra 140 m vers 2060. Etant donnés l’incertitude et le caractère limité des données disponibles, les résultats produits par le Modèle GM sont plus réalistes que ceux obtenus par une méthode basée sur des éléments finis (FEM) seule. Le Modèle GM pourrait être appliqué à d’autres cas présentant des limitations de données similaires.

Resumen

La gestión de los recursos de agua subterránea puede ser enriquecida usando modelos numéricos para mejorar las estrategias de desarrollo. Sin embargo, la carencia de datos básico a menudo limita la implementación de estos modelos. El Oasis de Kharga en el desierto occidental de Egipto es un área árida que depende principalmente del agua subterránea del Sistema Acuífero de las Areniscas de Nubian (NSAS), para el cual los datos hidrogeológicos necesarios para la simulación del agua subterránea están faltantes, introduciendo por lo tanto un problema para la calibración y validación del modelo. Se adaptó el modelo Grey (GM) para analizar el flujo de agua subterránea. Este modelo combina un método de elementos finitos (FEM) con un modelo de regresión lineal para tratar de obtener el mejor ajuste de las tendencias del nivel piezométrico comparado con las observaciones. Los resultados de la simulación del GM muestran claramente que el futuro del nivel freático en la parte nororiental del área de estudio enfrentará una severa depresión comparado con la de la parte sudoccidental y que las diferencias de carga hidráulica entre estas partes alcanzarán 140 m en 2060. Dada la limitación e incertidumbre de los datos disponibles, el GM produjo resultados más realista comparados con aquellos obtenidos a partir de sólo el FEM. El GM podría ser aplicado a otros casos con similares limitaciones de datos.

Resumo

A gestão dos recursos hídricos subterrâneos pode beneficiar de modelos numéricos para melhorar as estratégias de desenvolvimento. No entanto, a falta de dados de base limita frequentemente a aplicação destes modelos. O Oásis Kharga, no deserto ocidental do Egito, é uma região árida que depende maioritariamente de água subterrânea extraída do Sistema Aquífero do Arenito Núbio (NSAS). A falta de dados hidrogeológicos necessários para a simulação de fluxo deste sistema aquífero introduz um entrave à calibração e validação do modelo. Foi adotado o Modelo Cinza (MC) para analisar o fluxo das águas subterrâneas. Este modelo combina um método de elementos finitos (MEF) com um modelo de regressão linear para tentar obter o melhor ajuste das tendências dos níveis piezométricos em relação às observações. Os resultados da simulação do MC mostram claramente que o nível freático na parte nordeste da área de estudo irá sofrer um rebaixamento severo no futuro, comparativamente com a zona sudoeste, e que a diferença de potencial hidráulico entre os dois sectores chegará aos 140 m em 2060. Dada a incerteza e limitação de dados disponíveis, o MC produziu resultados mais realistas quando comparados com os resultados obtidos unicamente a partir do MEF, podendo ser aplicado a outros casos com restrições de dados semelhantes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  • Abdelrahman A, Watanabe K, Mebruk MN, Takeuch S (2010) Estimating groundwater residence time using multiple regression model based on fluoride dissolution. Environ Earth Sci 60:449–462

    Article  Google Scholar 

  • Affandi AK, Watanabe K (2007) Daily groundwater level fluctuation forecasting using soft computing technique. Nat Sci 5:1–10

    Google Scholar 

  • Amarsinghe SR, Watanabe K, Ishiyama K (2011) Study on the selection of unsaturated flow model for the different types of soil and soft rock. Environ Earth Sci 64:1795–1805

    Article  Google Scholar 

  • Anderson MP, Woessener WW (1992) Applied groundwater modeling-simulation of flow and advective transport. Academic, San Diego, CA

    Google Scholar 

  • Ball J (1927) Problems of the Libyan Desert. Geogr J 70:21–38, 105–128, 209–224

    Google Scholar 

  • Brinkmann P, Heinl M (1986) Numerical groundwater model. In: Thorweihe U (ed) Impact of climatic variation on East Saharan groundwater: modeling of large-scale flow regimes. Proc. workshop hydrogeol, 20–22 May 1985, Berlin. SFB 69, Berliner Geowiss Abh A 72: 135–155

  • Coley DA (1999) An introduction to genetic algorithms for scientists and engineers. World Scientific, Singapor

    Google Scholar 

  • Ebraheem AM, Riad S, Wycisk P, Seif El Nasr AM (2002) Simulation of impact of present and future groundwater extraction from the non-replenished Nubian Sandstone Aquifer in SW Egypt. Environ Geol 43:188–196

    Article  Google Scholar 

  • Goldberg DE, Deb K (1991) A comparative analysis of selection schemes used in genetic algorithms. In: Rawlins GJE (ed) Foundations of Genetic Algorithms. Kaufmann, Burlington, MA

    Google Scholar 

  • Heinl M, Thorweihe U (1993) Groundwater resources and management in SW Egypt. In: Meissner B, Wycisk P (eds) Geopotential and ecology. Catena Suppl 26, Catena, Reiskirchen, Germany, pp 99–121

  • Hesse K, Hissne A, Kheir O, Schnäcker E, Schneider M, Thorweihe U (1987) Hydrogeological investigations in the Nubian sandstone aquifer system, Eastern Sahara. Berliner Geowiss Abh A75:397–4641

    Google Scholar 

  • Kehl H, Bornkamm R (1993) Landscape ecology and vegetation units of the Western Desert of Egypt. In: Meissner B, Wycisk P (eds) Geopotential ecology: analysis of a desert region. Catena Suppl 26, Catena, Reiskirchen, Germany, pp 155–178

  • Khang ND, Watanabe K, Saegusab H (2004) Fracture step structure: geometrical characterization and effects on fluid flow and breakthrough curve. Eng Geol 75:107–127

    Article  Google Scholar 

  • Knetsch G, Yallouze M (1955) Remarks on the origin of the Egyptian Oasis depressions. Bull Soc Géogr Égypte 28:21–33

    Google Scholar 

  • Lamoreaux PE, Memon BA, Idris H (1985) Groundwater development, Kharga Oasis, western desert of Egypt: a long-term environment concern. Environ Geol Water Sci 7:129–149

    Article  Google Scholar 

  • Mitchell M (1999) An introduction to genetic algorithms. Massachusetts Institute of Technology, Cambridge, MA

    Google Scholar 

  • Mohammed M, Watanabe K, Takeuchi S (2010) Grey model for prediction of pore pressure change. Environ Earth Sci 60:1523–1534

    Article  Google Scholar 

  • Nash JE, Sutcliffe JV (1970) River flow forecasting through conceptual models, part 1: a discussion of principles. J Hydrolgeol 10:282–290

    Article  Google Scholar 

  • Nour S (1996) Groundwater potential for irrigation in the east Oweinat area, Western Desert, Egypt. Environ Geol 27:143–154

    Google Scholar 

  • Pinder GF, Gray WG (1977) Finite element simulation in surface and subsurface hydrology. Academic, New York

    Google Scholar 

  • Said R (1962) The geology of Egypt. Elsevier, Amsterdam

    Google Scholar 

  • Said R (1990) Geomorphology. In: Said R (ed) The geology of Egypt. Taylor and Francis, Rotterdam, The Netherlands

    Google Scholar 

  • Salman AB, Howari FM, El-Sankary MM, Wali AM, Saleh MM (2010) Environmental impact and natural hazards on Kharga Oasis monumental sites, Western Desert of Egypt. J Afr Earth Sci 58:341–353

    Article  Google Scholar 

  • Sanford KS (1935) Source of water in the northern-western Sudan. Geogr J 85:412–431

    Article  Google Scholar 

  • Shamseldin AY (1997) Application of a neural network technique to rainfall-runoff modeling. J Hydrol 199:272–294

    Article  Google Scholar 

  • Shata AA (1982) Hydrogeology of the great Nubian Sandstone basin, Egypt. Q J Eng Geol 15:127–133

    Article  Google Scholar 

  • Sivaraj R, Ravichandran T (2011) A review of selection methods in genetic algorithm. Int J Eng Technol 3:3792–3797

    Google Scholar 

  • Sonntag C (1986) A time-dependent groundwater model for the Eastern Sahara. Berliner Geowiss Abh A72:124–134

    Google Scholar 

  • Spitz K, Moreno J (1996) A practical guide to groundwater and solute transport modeling. Wiley, New York

    Google Scholar 

  • Thorweihe U, Heinl M (2002) Groundwater resources of the Nubian Aquifer System, NE-Africa. Synthesis, Observatoire du Sahara et du Sahel, Paris

  • Thorweihe U, Schandelmeier H (1993) Geoscientific research in Northeast Africa. Proc Int Conf Geosci. Balkema, Rotterdam, The Netherlands, 776 pp

    Google Scholar 

  • Watanabe K (1988) Analysis of three-dimensional groundwater flow in the near-surface layer of a small watershed. J Hydrol 102:287–300

    Article  Google Scholar 

  • Watanabe K, Kattel S, Takeuchi S, Mahmod WE (2012) Analysis of pore pressure changes due to shafts excavation by using Genetic Algorithm (GA). JSCE 68(1):193–198

    Google Scholar 

  • Wikipedia (2007–2012) URLs regarding the Kharga, Farafra, Dakhla, and Baris oases. http://en.wikipedia.org/wiki/Kharga. Accessed June 2008; http://en.wikipedia.org/wiki/Farafra. Accessed June 2012; http://en.wikipedia.org/wiki/Dakhla,_Egypt. Accessed January 2007; http://en.wikipedia.org/w/index.php?title=Baris,_Egypt&action=edit&redlink=1. Accessed January 2012

Download references

Acknowledgements

The authors would like to acknowledge Eng. Ashraf Zahr El-deen for supporting us with the data required for this research. Special words of gratitude go to Prof. Gamal Abo-zeid for his support and encouragement.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wael Elham Mahmod.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mahmod, W.E., Watanabe, K. & Zahr-Eldeen, A.A. Analysis of groundwater flow in arid areas with limited hydrogeological data using the Grey Model: a case study of the Nubian Sandstone, Kharga Oasis, Egypt. Hydrogeol J 21, 1021–1034 (2013). https://doi.org/10.1007/s10040-013-0959-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10040-013-0959-2

Keywords

Navigation