Skip to main content

Advertisement

Log in

Episodic recharge and climate change in the Murray-Darling Basin, Australia

Recharge épisodique et changement climatique dans le Murray-Darling Basin, Australie

Recarga episódica y cambio climático en la cuenca de Murray-Darling, Australia

澳大利亚Murray-Darling盆地地下水的间歇性补给及气候变化研究

Recarga episódica e alterações climáticas na Bacia de Murray-Darling, Austrália

  • Paper
  • Published:
Hydrogeology Journal Aims and scope Submit manuscript

Abstract

In semi-arid areas, episodic recharge can form a significant part of overall recharge, dependant upon infrequent rainfall events. With climate change projections suggesting changes in future rainfall magnitude and intensity, groundwater recharge in semi-arid areas is likely to be affected disproportionately by climate change. This study sought to investigate projected changes in episodic recharge in arid areas of the Murray-Darling Basin, Australia, using three global warming scenarios from 15 different global climate models (GCMs) for a 2030 climate. Two metrics were used to investigate episodic recharge: at the annual scale the coefficient of variation was used, and at the daily scale the proportion of recharge in the highest 1% of daily recharge. The metrics were proportional to each other but were inconclusive as to whether episodic recharge was to increase or decrease in this environment; this is not a surprising result considering the spread in recharge projections from the 45 scenarios. The results showed that the change in the low probability of exceedance rainfall events was a better predictor of the change in total recharge than the change in total rainfall, which has implications for the selection of GCMs used in impact studies and the way GCM results are downscaled.

Résumé

Dans les régions semi arides la recharge épisodique peut constituer une partie importante de la recharge totale dépendant d’épisodes pluvieux rares. Avec des prévisions de changement climatique suggérant de futurs changements d’ampleur et d’intensité des précipitations, la recharge de nappe dans les régions semi arides sera vraisemblablement affectée de façon disproportionnée par le changement climatique. Cette étude cherchait à examiner les changements liés à une recharge épisodique dans les zones arides du Murray-Darling Basin, Australie, en utilisant trois scénarios de réchauffement global tirés de 15 modèles différents (GCMs) du climat 2030. Deux grandeurs ont été utilisées pour examiner la recharge épisodique: le coefficient de variation à l’échelle de l’année, et le pourcentage de recharge au plus haut 1% du jour à l’échelle journalière. Les grandeurs étaient proportionnelles mais ne permettaient pas de conclure si la recharge épisodique devait ou non augmenter dans cet environnement; ceci n’est pas un résultat surprenant étant donnée la dispersion des projections de recharge des 45 scénarios. Les résultats ont montré que le changement dans la probabilité basse d’un excédent des événements pluvieux était un meilleur indicateur du changement de recharge totale que le changement de précipitation totale, ce qui a des implications dans la sélection des GCM utilisés dans les études d’impact et la façon dont les résultats du GCM sont réduits.

Resumen

En áreas semiáridas la recarga episódica puede formar una parte significativa de la recarga total, dependiendo de los eventos infrecuentes de las precipitaciones. Con las proyecciones de cambio climático sugiriendo cambios en las intensidades y magnitudes de las futuras precipitaciones, probablemente la recarga del agua subterránea en área semiáridas se verá afectada desproporcionadamente por el cambio climático. Este estudio buscó investigar los cambios proyectados en la recarga episódica en áreas áridas de la cuenca Murray-Darling, Australia, usando tres escenarios de calentamiento global a partir de 15 diferentes modelos climáticos globales (GCMs) para el clima en 2030. Se utilizaron dos métricas para investigar la recarga episódica: en escala anual se usó el coeficiente de variación, y en la escala diaria la proporción de la recara en un 1% más alto de la recarga diaria. Estas métricas eran recíprocamente proporcionales pero no fueron concluyentes acerca si la recarga episódica iba a incrementarse o disminuir en este ambiente; esto no es un resultado sorprendente considerando la amplitud en las proyecciones de la recarga a partir de 45 escenarios. Los resultados mostraron que el cambio en la baja probabilidad de eventos de excedencia de las precipitaciones fue un mejor predictor del cambio en la recarga total, lo cual tiene implicancias para la selección de GCMs usados en estudios de impacto y la manera en que los resultados del GCM son llevados a escalas más reducidas.

摘要

在半干旱地区,间歇性补给量能占到总补给量的很大一部分,取决于不频发的降雨事件。由于气候变化会导致未来降雨大小和强度的变化,半干旱地区的地下水补给很可能不成比例地受气候变化影响。本研究根据从15个不同的全球气候模型(GCMs)中选择的3个全球暖化情景,分析了2030年的气候条件,调查了澳大利亚Murray-Darling盆地干旱地区地下水间歇性补给的变化。利用两个变量来调查间歇性补给:年尺度上的变量系数以及日尺度上日补给量最高1%的补给比例。变量二者之间是成比例的,但是这个环境条件下间歇性补给量到底是增加还是降低的,则是不确定的,考虑到45个情景中补给变化的广度,这个结果并不奇怪。结果表明超过的降雨事件的低概率变化相比总的降雨变化,是更好地总补给量变化的预测方法,这对影响研究中全球气候模型的选择以及该模型结果的尺度缩小方法是非常有意义的.

Resumo

A recarga episódica em zonas semi-áridas pode constituir uma parte significativa da recarga total, dependente de eventos de precipitação raros. Com as projeções para as alterações climáticas a sugerir futuras modificações na grandeza e na intensidade da precipitação, é provável que a recarga da água subterrânea em zonas semi-áridas venha a ser afectada desproporcionadamente pelas alterações climáticas. Este estudo procurou investigar as alterações projectadas da recarga episódica em zonas áridas da Bacia de Murray-Darling, Austrália, usando três cenários de aquecimento global em 15 diferentes modelos climáticos globais (GCM) para um clima em 2030. Foram usadas duas métricas para investigar a recarga episódica: à escala anual foi usado o coeficiente de variação e à escala diária usou-se a proporção de recarga das maiores percentagens de recarga diária. As métricas foram proporcionais entre si, mas foram inconclusivas quanto à possibilidade da recarga episódica ir aumentar ou diminuir neste ambiente, o que não é um resultado surpreendente, considerando a dispersão das projeções de recarga a partir dos 45 cenários. Os resultados mostraram que as mudanças na baixa probabilidade de superação de eventos de precipitação foi um melhor preditor das modificações na recarga total, do que a mudança na precipitação total, o que tem implicações para a selecção dos GCM utilizados em estudos de impacte e na forma como os resultados de GMC são aplicados localmente.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Austin J, Zhang L, Jones R, Durack P, Dawes W, Hairsine P (2010) Climate change impact on water and salt balances: an assessment of the impact of climate change on catchment salt and water balances in the Murray-Darling Basin, Australia. Clim Change 100(3–4):607–631

    Article  Google Scholar 

  • Barnes CJ, Jacobson G, Smith GD (1992) The origin of high-nitrate ground waters in the Australian arid zone. J Hydrol 137(1–4):181–197

    Article  Google Scholar 

  • BRS (2000) Land use data. Australian Government, Bureau of Rural Sciences, Canberra

    Google Scholar 

  • Charles SP, Bates BC, Smith IN, Hughes JP (2004) Statistical downscaling of daily precipitation from observed and modelled atmospheric fields. Hydrol Proc 18(8):1373–1394

    Article  Google Scholar 

  • Chiew FHS, Teng J, Kirono D, Frost AJ, Bathols JM, Vaze J, Viney NR, Young WJ, Hennessy KJ, Cai WJ (2008a) Climate data for hydrologic scenario modelling across the Murray-Darling Basin. A report to the Australian government from the CSIRO Murray-Darling Sustainable Yields Project, CSIRO, Canberra, Australia

    Google Scholar 

  • Chiew FHS, Vaze J, Viney NR, Jordan PW, Perraud J-M, Zhang L, Young WJ, Penaarancibia J, Morden RA, Freebairn A, Austin J, PIH, Weisenfeld CR Murphy R (2008b) Rainfall-runoff modelling across the Murray-Darling Basin. A report to the Australian government from the CSIRO Murray-Darling Sustainable Yields Project, CSIRO, Canberra, Australia

  • Chiew FHS, Teng J, Vaze J, Post DA, Perraud JM, Kirono DGC, Viney NR (2009) Estimating climate change impact on runoff across southeast Australia: method, results, and implications of the modeling method. Water Resour Res 45:W10414

    Article  Google Scholar 

  • Commander DP (2004) Exploitation of groundwater systems in arid Australia. In: Ho G. Matthew K (eds) Sustainability of water resources: International conference, Western Australia November 2002. IWA, London, pp 232

  • Cresswell RG, Jacobson G, Wischusen J, Fifield KL (1999) Ancient groundwaters in the Amadeus Basin, Central Australia: evidence from the radio-isotope 36Cl. J Hydrol 223(3–4):212–220

    Article  Google Scholar 

  • Crosbie RS, Jolly ID, Leaney FW, Petheram C (2010a) Can the dataset of field based recharge estimates in Australia be used to predict recharge in data-poor areas? Hydrol Earth Syst Sci 14(10):2023–2038

    Article  Google Scholar 

  • Crosbie RS, McCallum JL, Walker GR, Chiew FHS (2010b) Modelling climate change impacts on groundwater recharge in the Murray-Darling Basin, Australia. Hydrogeol J 18(7):1639–1656

    Article  Google Scholar 

  • Crosbie RS, Wilson B, Hughes JD, McCulloch C, King WM (2008) A comparison of the water use of tree belts and pasture in recharge and discharge zones in a saline catchment in the central west of NSW, Australia. Agric Water Manage 95(3):211–223

    Article  Google Scholar 

  • CSIRO (2008) Water availability in the Murray-Darling Basin. A report to the Australian Government from the CSIRO Murray-Darling Basin Sustainable Yields Project, CSIRO, Australia, http://www.csiro.au/files/files/po0n.pdf. Cited 7 November 2011

  • CSIRO and BOM (2007) Climate change in Australia, CSIRO and BOM, Canberra, Australia

  • Cunnane C (1978) Unbiased plotting positions: a review. J Hydrol 37:205–222

    Article  Google Scholar 

  • Dawes W, Zhang L, Dyce P (2004) WAVES v3.5 user manual, CSIRO Land and Water, Canberra, Australia

  • Dawes WR, Gilfedder M, Stauffacher M, Coram J, Hajkowicz S, Walker GR, Young M (2002) Assessing the viability of recharge reduction for dryland salinity control: Wanilla, Eyre Peninsula. Aust J Soil Res 40(8):1407–1424

    Article  Google Scholar 

  • French RH, Jacobson RL, Lyles BF (1996) Threshold precipitation events and potential ground-water recharge. J Hydraul Eng 122(10):573–578

    Article  Google Scholar 

  • Harrington GA, Cook PG, Herczeg AL (2002) Spatial and temporal variability of ground water recharge in Central Australia: a tracer approach. Ground Water 40(5):518–528

    Article  Google Scholar 

  • Hatton TJ, Walker J, Dawes WR, Dunin FX (1992) Simulations of hydroecological responses to elevated CO2 at the catchment scale. Aust J Bot 40:679–696

    Article  Google Scholar 

  • Holman IP, Tascone D, Hess TM (2009) A comparison of stochastic and deterministic downscaling methods for modelling potential groundwater recharge under climate change in East Anglia, UK: implications for groundwater resource management. Hydrogeol J 17(7):1629–1641

    Article  Google Scholar 

  • IPCC (2007) Climate change 2007: the physical science basis. Contribution of Working Group 1 to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UK, 996 pp

  • Izbicki JA, Radyk J, Michel RL (2000) Water movement through a thick unsaturated zone underlying an intermittent stream in the western Mojave Desert, southern California, USA. J Hydrol 238(3–4):194–217

    Article  Google Scholar 

  • Jacobson G, Calf GE, Jankowski J, McDonald PS (1989) Groundwater chemistry and palaeorecharge in the Amadeus Basin, Central Australia. J Hydrol 109(3–4):237–266

    Article  Google Scholar 

  • Jeffrey SJ, Carter JO, Moodie KB, Beswick AR (2001) Using spatial interpolation to construct a comprehensive archive of Australian climate data. Environ Modell Software 16(4):309–330

    Article  Google Scholar 

  • Johnston RM, Barry SJ, Bleys E, Bui EN, Moran CJ, Simon DAP, Carlile P, McKenzie NJ, Henderson BL, Chapman G, Imhoff M, Maschmedt D, Howe D, Grose C, Schoknecht N, Powell B, Grundy M (2003) ASRIS: the database. Aust J Soil Res 41(6):1021–1036

    Article  Google Scholar 

  • Leaney et al. (2011) Recharge and discharge estimation in data poor areas: scientific reference guide. Water for a Healthy Country National Research Flagship, CSIRO, Canberra, Australia

  • Lewis FM, Walker GR (2002) Assessing the potential for significant and episodic recharge in southwestern Australia using rainfall data. Hydrogeol J 10(1):229–237

    Article  Google Scholar 

  • Lewis MF (2000) Episodic recharge in the western Australian wheatbelt. PhD Thesis, University of Melbourne, Australia

  • Lim WH, Roderick ML (2008) Global Water water cycle atlas based on the IPCC AR4 climate models. The Australian National University, Canberra

    Google Scholar 

  • Macumber PG (1991) Interaction between ground water and surface systems in northern Victoria. Department of Conservation and Environment - Victoria, Melbourne, Australia

    Google Scholar 

  • McCallum JL, Crosbie RS, Walker GR, Dawes WR (2010) Impacts of climate change on groundwater: a sensitivity analysis of recharge. Hydrogeol J 18(7):1625–1638

    Article  Google Scholar 

  • Meehl GA, Covey C, Delworth T, Latif M, McAvaney B, Mitchell JFB, Stouffer RJ, Taylor KE (2007) The WCRP CMIP3 multimodel dataset: a new era in climate change research. Bull Am Meteorol Soc 88(9):1383

    Google Scholar 

  • Mileham L, Taylor RG, Todd M, Tindimugaya C, Thompson J (2009) The impact of climate change on groundwater recharge and runoff in a humid, equatorial catchment: sensitivity of projections to rainfall intensity. Hydrol Sci J 54(4):727–738

    Article  Google Scholar 

  • Ng GHC, McLaughlin D, Entekhabi D, Scanlon BR (2010) Probabilistic analysis of the effects of climate change on groundwater recharge. Water Resour Res 46:7502

    Article  Google Scholar 

  • Nunez M, McGregor JL (2007) Modelling future water environments of Tasmania, Australia. Clim Res 34(1):25–37

    Article  Google Scholar 

  • Owor M et al (2009) Rainfall intensity and groundwater recharge: empirical evidence from the Upper Nile Basin. Environ Res Lett 4(3):035009

    Article  Google Scholar 

  • Salama R, Hatton T, Dawes W (1999) Predicting land use impacts on regional scale groundwater recharge and discharge. J Environ Qual 28(2):446–460

    Article  Google Scholar 

  • Scanlon BR, Christman M, Reedy RC, Porro I, Simunek J, Flerchinger GN (2002) Intercode comparisons for simulating water balance of surficial sediments in semiarid regions. Water Resour Res 38(12):1323

    Article  Google Scholar 

  • Serrat-Capdevila A, Valdés JB, Pérez JG, Baird K, Mata LJ, Maddock T (2007) Modeling climate change impacts—and uncertainty—on the hydrology of a riparian system: The San Pedro Basin (Arizona/Sonora). J Hydrol 347(1–2):48–66

    Article  Google Scholar 

  • Slavich PG, Walker GR, Jolly ID, Hatton TJ, Dawes WR (1999) Dynamics of Eucalyptus largiflorens growth and water use in response to modified watertable and flooding regimes on a saline floodplain. Agric Water Manage 39(2–3):245–264

    Article  Google Scholar 

  • Small EE (2005) Climatic controls on diffuse groundwater recharge in semiarid environments of the southwestern United States. Water Resour Res 41(4): W04012

    Google Scholar 

  • Sun Y, Solomon S, Dai AG, Portmann RW (2006) How often does it rain? J Clim 19(6):916–934

    Article  Google Scholar 

  • Toews MW, Allen DM (2009) Simulated response of groundwater to predicted recharge in a semi-arid region using a scenario of modelled climate change. Environ Res Lett 4(3):35003

    Article  Google Scholar 

  • UNEP (1992) World atlas of desertification, United Nations Environment Program, Nairobi, Kenya

  • van Roosmalen L, Sonnenborg TO, Jensen KH (2009) Impact of climate and land use change on the hydrology of a large-scale agricultural catchment. Water Resour Res 45:A15

    Google Scholar 

  • Wang HX, Zhang L, Dawes WR, Liu CM (2001) Improving water use efficiency of irrigated crops in the North China Plain: measurements and modelling. Agric Water Manage 48(2):151–167

    Article  Google Scholar 

  • Xu C, Martin M, Silberstein R, Smetten K (2008) Identifying sources of uncertainty in groundwater recharge estimates using the biophysical model WAVES. Water Down Under, Adelaide, Australia

    Google Scholar 

  • Yang YH, Watanabe M, Wang ZP, Sakura Y, Tang CY (2003) Prediction of changes in soil moisture associated with climatic changes and their implications for vegetation changes: Waves model simulation on Taihang Mountain, China. Clim Change 57(1–2):163–183

    Article  Google Scholar 

  • Zhang L, Dawes W (1998) WAVES: an integrated energy and water balance model. Technical Report No. 31/98, CSIRO Land and Water, Canberra, Australia

  • Zhang L, Dawes WR, Hatton TJ (1996) Modelling hydrologic processes using a biophysically based model–application of WAVES to FIFE and HAPEX-MOBILHY. J Hydrol 185(1–4):147–169

    Article  Google Scholar 

  • Zhang L, Dawes WR, Hatton TJ, Hume IH, O’Connell MG, Mitchell DC, Milthorp PL, Yee M (1999) Estimating episodic recharge under different crop/pasture rotations in the Mallee region. Part 2. Recharge control by agronomic practices. Agric Water Manage 42(2):237–249

    Google Scholar 

Download references

Acknowledgements

This work is part of the Murray-Darling Basin Sustainable Yields Project, which was funded by the National Water Commission.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Russell S. Crosbie.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Crosbie, R.S., McCallum, J.L., Walker, G.R. et al. Episodic recharge and climate change in the Murray-Darling Basin, Australia. Hydrogeol J 20, 245–261 (2012). https://doi.org/10.1007/s10040-011-0804-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10040-011-0804-4

Keywords

Navigation