Skip to main content
Log in

Analytical solutions of tracer transport in fractured rock associated with precipitation-dissolution reactions

Solutions analytiques au transport de traceur dans une roche fracturée associé à des réactions de précipitation-dissolution

Soluciones analíticas del transporte de trazadores en rocas fracturadas asociadas con reacciones de disolución-precipitación

沉淀溶解反应下裂隙岩石中示踪剂运移的解析解

Soluções analíticas de transporte de traçadores em rochas fracturadas, associadas a reacções de precipitação-dissolução

  • Paper
  • Published:
Hydrogeology Journal Aims and scope Submit manuscript

Abstract

Precipitation-dissolution reactions are important for a number of applications such as isotopic tracer transport in the subsurface. Analytical solutions have been developed for tracer transport in both single-fracture and multiple-fracture systems associated with these reactions under transient and steady-state transport conditions. These solutions also take into account advective transport in fractures and molecular diffusion in the rock matrix. For studying distributions of disturbed tracer concentration (the difference between actual concentration and its equilibrium value), effects of precipitation-dissolution reactions are mathematically equivalent to a “decay” process with a decay constant proportional to the corresponding bulk reaction rate. This important feature significantly simplifies the derivation procedure by taking advantage of the existence of analytical solutions for tracer transport associated with radioactive decay in fractured rock. It is also useful for interpreting tracer breakthrough curves, because the impact of a decay process is relatively easy to analyze. Several illustrative examples are presented, which show that the results are sensitive to fracture spacing, matrix diffusion coefficient (fracture surface area), and bulk reaction rate (or “decay” constant), indicating that the relevant flow and transport parameters may be estimated by analyzing tracer signals.

Résumé

Les réactions de précipitation-dissolution sont importantes pour nombre d’applications telle le cheminement de traceur isotopique en subsurface. Des solutions analytiques ont été développées pour le cheminement de traceur dans des systèmes à fracturation simple d’une part et multiple d’autre part, associant ces réactions en régime transitoire et en régime permanent. Ces solutions prennent aussi en compte le transport advectif dans les fractures et la diffusion moléculaire dans la matrice rocheuse. Pour l’étude les distributions des concentrations de traceur perturbées (la différence entre la concentration réelle et sa valeur moyenne), les effets des réactions de précipitation-dissolution sont mathématiquement équivalentes à un processus de “désintégration” avec une constante proportionnelle au taux de réaction résultant. Cette importante remarque simplifie considérablement la procédure de dérivation, prenant en compte l’existence de solutions analytiques pour le transport de traceur associé à la désintégration radioactive dans une roche fracturée. C’est aussi utile pour interpréter les courbes résultantes de concentration, car l’incidence d’un processus de désintégration est relativement aisée à analyser. Plusieurs exemples présentés illustrent la sensibilité des résultats à l’ouverture de la fracturation, au coefficient matriciel de diffusion (aire de surface fracturée) et au taux de réaction résultant (ou constante de “désintégration”), indiquant que flux et paramètres de transport considérés peuvent être estimés en analysant le signal du traceur.

Resumen

Las reacciones disolución – precipitación son importantes para numerosas aplicaciones tales como el transporte de trazadores isotópicos en el subsuelo. Se han desarrollado soluciones analíticas para el transporte de trazadores en sistemas de fracturas simples y de fracturas múltiples asociadas con estas reacciones en condiciones estacionarias y transitorias. Estas soluciones también tuvieron en cuenta el transporte advectivo en fracturas y la difusión molecular en la matriz de la roca. Para estudiar las distribuciones de la concentración del trazador disturbado (la diferencia entre la concentración real y su valor de equilibrio), los efectos de las reacciones disolución – precipitación son matemáticamente equivalentes a un proceso de decaimiento con una constante de decaimiento proporcional a la correspondiente al volumen del ritmo de reacción. Esta importante característica simplifica considerablemente el procedimiento de derivación aprovechando la existencia de soluciones analíticas para el transporte de trazadores asociado con el decaimiento radiactivo en rocas fracturadas. También es útil para la interpretación de las curvas de avance del trazador, ya que el impacto de un proceso de decaimiento es relativamente fácil para analizar. Se presentan varios ejemplos ilustrativos que muestran que los resultados son sensibles a la separación de la fractura, al coeficiente de difusión de la matriz (área de la superficie de la fractura) y al ritmo de la reacción (o constante de decaimiento), lo que indica que el flujo de relevancia y los parámetros de transporte pueden ser estimados por el análisis de señales del trazador.

摘要

沉淀溶解反应对地下同位素示踪剂的运移等一系列应用都很重要。本文给出了在稳态与非稳态条件下与反应相关的单一裂隙和多重裂隙系统中示踪剂运移的解析解。这些解考虑了裂隙中的对流运移与岩石骨架中的分子扩散。由于干扰示踪剂浓度 (实际浓度和平衡值之间的差异) 的分布, 沉淀溶解反应效应在数值上等价于拥有衰变常数的一个衰变过程,且衰变常数与整体的反应速率成比例。由于可以利用放射性示踪剂在裂隙岩石中运移的解析解, 因此这一重要特征显著地简化了推导过程。由于衰变过程的影响相对容易分析, 对于解释示踪剂穿透曲线也有助益。本文列举了若干个实子, 其结果对裂隙间距、骨架扩散系数 (断裂表面积) 以及体积反应速率 (或衰变常数) 敏感, 表明通过分析示踪剂信号可以估计相关流动及运移参数。

Resumo

As reacções de precipitação-dissolução são importantes para uma série de aplicações, tais como o transporte de traçadores isotópicos no subsolo. Têm sido desenvolvidas soluções analíticas para análise do transporte de traçadores, quer em fracturas simples, quer em sistemas de fracturas múltiplas, tanto em regime transitório como permanente. Essas soluções têm também em conta o transporte advectivo nas fracturas e a difusão molecular na matriz rochosa. Para estudar as distribuições da concentração do traçador alterado (a diferença entre a concentração real e o seu valor de equilíbrio), os efeitos das reacções de precipitação-dissolução são matematicamente equivalentes a um processo de “decaimento”, com uma constante de decaimento proporcional à taxa global da reacção. Esta característica simplifica significativamente o processo de derivação, aproveitando a existência de soluções analíticas para análise do transporte de traçadores associados ao decaimento radioactivo em rochas fracturadas. Também é útil para interpretar as curvas de variação da concentração ao longo do tempo dos traçadores, pois o impacte de um processo de decaimento é relativamente fácil de analisar. São apresentados vários exemplos ilustrativos, os quais mostram que os resultados são sensíveis ao espaçamento entre fracturas, ao coeficiente de difusão na matriz (área de superfície da fractura), e à velocidade de reacção (ou constante “decaiment”), indicando que os parâmetros de escoamento e de transporte de massa mais relevantes podem ser estimados através da análise de traçadores.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Barker JA (1982) Laplace transform solution for solute transport in fissured aquifers. Adv Water Resour 5(2):98–104

    Article  Google Scholar 

  • DePaolo DJ (2006) Isotopic effects in fracture-dominated reactive fluid-rock systems. Geochim Cosmochim Acta 70:1077–1096

    Article  Google Scholar 

  • Freeze RA, Cherry JA (1979) Groundwater. Prentice-Hall, Englewood Cliffs, NJ

    Google Scholar 

  • Maloszewski P, Zuber A (1985) On the theory of tracer experiments in fissured rocks with a porous matrix. J Hydrol 79:333–358

    Article  Google Scholar 

  • MIT (2007) The future of geothermal energy. Massachusetts Institute of Technology, Cambridge, MA

    Google Scholar 

  • Mukhopadhyay S, Liu HH, Spycher N, Kennedy BM (2010) Semi-analytical solutions for transient transport of a tracer in fractured rocks including fluid-rock interactions. LBNL report. Lawrence Berkeley National Laboratory, Berkeley, CA

    Google Scholar 

  • Neretnieks I (1980) Diffusion in the rock matrix: an important factor in radionuclide retardation? J Geophy Res 85:4379–4397

    Article  Google Scholar 

  • Neretnieks I (2002) A stochastic multi-channel model for solute transport: analysis of tracer tests in fractured rock. J Cont Hydrol 55:175–211

    Article  Google Scholar 

  • Rasmuson A, Neretnieks I (1981) Migration of radionuclides in fissured rock: the influence of micropore diffusion and longitudinal dispersion. J Geophys Res 86:3749–3758

    Article  Google Scholar 

  • Sudicky EA, Frind EO (1982) Contaminant transport in fractured porous media: analytical solutions for a system of parallel fractures. Water Resour Res 18(6):1634–1642

    Article  Google Scholar 

  • Tang DH, Frind EO, Sudicky EA (1981) Contaminant transport in fractured porous media: analytical solution for a single fracture. Water Resour Res 17(3):555–564

    Article  Google Scholar 

Download references

Acknowledgements

The original version of the manuscript was reviewed by Drs. Dan Hawkes and Dmitriy Silin at LBNL. We also appreciate the constructive comments from Prof. Maria-Theresia Schafmeister, Dr. Jerry Fairley and two anonymous reviewers. This work was supported by the American Recovery and Reinvestment Act (ARRA), through the Assistant Secretary for Energy Efficiency and Renewable Energy (EERE), Office of Technology Development, Geothermal Technologies Program, of the US Department of Energy under Contract No. DE-AC02-05CH11231.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hui-Hai Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, HH., Mukhopadhyay, S., Spycher, N. et al. Analytical solutions of tracer transport in fractured rock associated with precipitation-dissolution reactions. Hydrogeol J 19, 1151–1160 (2011). https://doi.org/10.1007/s10040-011-0749-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10040-011-0749-7

Keywords

Navigation