Skip to main content
Log in

HydroCube: an entity-relationship hydrogeological data model

HydroCube: un modèle de données hydrogéologiques entité-association

HydroCube: un modelo de datos hidrogeológicos basado en la relación de entidades

HydroCube: 一种实体关系水文地质数据模型

HydroCube: um modelo entidade-relação de informação hidrogeológica

  • Technical Note
  • Published:
Hydrogeology Journal Aims and scope Submit manuscript

Abstract

Managing, handling and accessing hydrogeological information depends heavily on the applied hydrogeological data models, which differ between institutions and countries. The effective dissemination of hydrogeological information requires the convergence of such models to make hydrogeological information accessible to multiple users such as universities, water suppliers, and administration and research organisations. Furthermore, because hydrogeological studies are complex, they require a wide variety of high-quality hydrogeological data with appropriate metadata in clearly designed and coherent structures. A need exists, therefore, to develop and implement hydrogeological data models that cover, as much as possible, the full hydrogeological domain. A new data model, called HydroCube, was developed for the Walloon Region in Belgium in 2005. The HydroCube model presents an innovative holistic project-based approach which covers a full set of hydrogeological concepts and features, allowing for effective hydrogeological project management. The model stores data relating to the project locality, hydrogeological equipment, and related observations and measurements. In particular, it focuses on specialized hydrogeological field experiments such as pumping and tracer tests. This logical data model uses entity-relationship diagrams and it has been implemented in the Microsoft Access environment. It has been enriched with a fully functional user interface.

Résumé

La gestion, l’accès aux informations à caractère hydrogéologique et leur utilisation dépendent fortement des modèles de données hydrogéologiques appliqués, qui diffèrent selon les institutions et les pays. Du fait de la dispersion effective des informations, ces modèles doivent converger pour aboutir à des informations accessibles à de multiples utilisateurs : universités, exploitants, administrations et structures de recherche. De plus, en raison de leur complexité, les études hydrogéologiques requièrent une grande variété de données de bonne qualité, avec des métadonnées adéquates dans des structures cohérentes et clairement agencées. C’est pourquoi il existe un réel besoin de développement et de mise en œuvre de modèles couvrant autant que possible la totalité du domaine de l’hydrogéologie. Un nouveau modèle dénommé HydroCube est développé pour la Wallonie en Belgique depuis 2005. Le modèle HydroCube innove avec une approche holistique par projets, couvrant un ensemble complet de concepts et de structures hydrogéologiques. Il permet une gestion efficace des projets. Le modèle stocke des données concernant la localisation, l’équipement hydrogéologique, les observations et mesures. Il vise les tests de terrain spécifiques à l’hydrogéologie tels que pompages d’essai et traçages. Ce modèle logique utilise des diagrammes entité-association et a été développé sous environnement Microsoft Access. Il a été enrichi d’une interface utilisateur fonctionnelle.

Resumen

La gestión, el manejo y el acceso de la información hidrogeológica depende fuertemente de los modelos de datos hidrogeológicos aplicados, los cuales difieren entre instituciones y países. La diseminación efectiva de la información hidrogeológica requiere la convergencia de tales modelos para hacer accesible la información hidrogeológica a múltiples usuarios tales como universidades, abastecedores de agua, y organizaciones de administración e investigación. Además, debido a que los estudios hidrogeológicos son complejos, ellos requieren una amplia variedad de datos hidrogeológicos de alta calidad con metadatos apropiados en estructuras claramente diseñadas y coherentes. Existe una necesidad, en consecuencia, para desarrollar e implementar modelos de datos hidrogeológicos que cubran, tanto como sea posible, el dominio hidrogeológico completo. Se ha desarrollado un nuevo modelo de datos, llamado HydroCube, para la región Walloon en Bélgica desde 2005. El modelo HydroCube presenta un enfoque innovativo holístico basado en un proyecto que cubre un conjunto completo de conceptos y características hidrogeológicas, permitiendo una gestión efectiva de un proyecto hidrogeológico. El modelo almacena datos relativos a la localidad del proyecto, equipos hidrogeológicos y medidas y observaciones relacionadas. En particular, se enfoca sobre experimentos hidrogeológicos especializados de campo, tales como bombeo y pruebas de trazadores. Este modelo de datos lógicos usa diagramas de las relaciones de las entidades existentes y ha sido implementado en el entorno de Microsoft Access. Ello ha sido enriquecido con una interfase completamente funcional para el usuario.

摘要

管理、处理以及访问水文地质信息很大程度上取决于应用水文地质数据模型, 该模型在机构和国家方面表现是不同的。水文地质信息的有效推广需要这类模型的融合, 来使多方面的用户, 如大学, 水供应商和管理及研究组织获取水文地质信息。此外, 由于水文地质研究是非常复杂的, 它们要求大量高质量的水文地质数据且需要清晰设计和相关结构的元数据。所以需要建立和实施水文地质数据模型, 该模型应该尽可能的包含全部水文地质领域。采用2005年以来的资料比利时Walloon地区一个新的数据模型—HydroCube。该模型提出了一个创新性和整体性的基于项目的方法, 该方法涵盖了一整套水文地质概念和特征, 支持有效的水文地质项目管理。该模型收集了与项目位置, 水文地质设备以及相关观测有关的数据。特别的是, 它着眼于专业的水文地质现场试验, 如抽水和示踪试验。这种逻辑数据模型应用了实体关系图且在微软Access数据库环境中成功运行。现在该模型已经有了全功能化的操作界面。

Resumo

A gestão, manuseamento e acesso à informação hidrogeológica dependem fortemente dos modelos de informação hidrogeológica aplicados, que variam entre instituições e países. A disseminação efectiva de informação hidrogeológica requer a convergência desses modelos para tornar a informação hidrogeológica acessível a múltiplos utilizadores como universidades, entidades gestoras de sistemas de abastecimento de água, administração pública e organizações de investigação. Adicionalmente, e porque os estudos hidrogeológicos são complexos, eles exigem uma ampla variedade de informação hidrogeológica de elevada qualidade com metadados apropriados dentro de estruturas claras e coerentes. Deste modo, torna-se necessário o desenvolvimento e implementação de modelos de informação hidrogeológica que cubram, tanto quanto possível, todo o domínio hidrogeológico. Desde 2005 que um novo modelo de informação, designado HydroCube, foi desenvolvido para a Região de Walloon na Bélgica. O modelo HydroCube apresenta uma metodologia holística inovadora baseada no projecto, que cobre um conjunto completo de conceitos e características hidrogeológicas, permitindo uma gestão efectiva do projecto hidrogeológico. O modelo armazena informação relacionada com a localização do projecto, equipamento hidrogeológico e observações e medições relacionadas com o projecto. O modelo centra-se particularmente em ensaios hidrogeológicos de campo especializados, tais como ensaios de bombagem e de traçadores. Este modelo lógico de informação usa diagramas entidade-relação e foi implementado no ambiente Microsoft Access. Foi enriquecido com uma interface de utilizador completamente funcional.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Batcheller JK (2008) Automating geospatial metadata generation: an integrated data management and documentation approach. Comput Geosci 34(Issue 4):387–398

    Google Scholar 

  • Batlle Aguilar J, Orban P, Dassargues A, Brouyère S (2007) Identification of groundwater quality trends in a chalky aquifer threatened by intensive agriculture. Hydrogeol J 15:1615–1627. doi:10:/1007/s10040-007-0204-y

    Google Scholar 

  • Boisvert E, Brodeur J, Brodaric B (2005) NADM-H2O and H2O-GML: enabling decision support by extending NADM for groundwater information interoperability, digital mapping techniques ’05-workshop proceedings. http://pubs.usgs.gov/of/2005/1428/boisvert/index.html. Cited 01 June 2010

  • Bouezmarni M, Dossin F, Habils F, Rekk S, Ruthy I, Sorel A (2006) Hydrogeological mapping of the Walloon Region (Belgium). Now on the Web. 5th European Congress on Regional Geoscientific Cartography and Information Systems: Earth and Water, Barcelone, Spain, 13–16 June 2006

  • Brouyère S, Carabin G, Dassargues A (2005) Influence of injection conditions on field tracer experiments. Ground Water 43:389–400

    Article  Google Scholar 

  • Carrera-Hernández JJ, Gaskin SJ (2008) The Basin of Mexico hydrogeological database (BMHDB): implementation, queries and interactions with open source software. Environ Modell Softw 23:1271–1279

    Article  Google Scholar 

  • Chia-Hsin H, Tyng-Ruey C, Dong-Po D, Hahn-Ming L (2009) Building GML-native web-based geographic information systems. Comput Geosci 35(Issue 9):1802–1816

    Google Scholar 

  • Cox S (2004) XMML - a standards conformant XML language for transfer of exploration data, ASEG 17th Geophysical Conference and Exhibition, Sydney, 2004

  • Cox S, Daisey P, Lake R, Portele C, Whiteside A (2002) Geography markup language version 3.0, OGC document no. 02-023r4, Toulouse, France. http://www.opengeospatial.org/standards/gml. Cited 01 June 2010

  • De Dreuzy J-R, Bodin J, Le Grand H, Davy Ph, Boulanger D, Battais A, Bour O, Gouze Ph, Porel G (2006) General database for ground water site information. Ground Water 44(5):743–748

    Google Scholar 

  • Gogu RC, Carabin G, Hallet V, Peters V, Dassargues A (2001) GIS-based hydrogeological databases and groundwater modelling. Hydrogeol J 9(6):555–569

    Article  Google Scholar 

  • Lake R (2005) The application of geography markup language (GML) to the geological sciences. Comput Geosci 31:1081–1094

    Article  Google Scholar 

  • Maidment DR (2002) Arc Hydro: GIS for water resources. ESRI, Redlands, CA

    Google Scholar 

  • National Groundwater Committee Working Group on National Groundwater Data Standards (1999) The Australian national groundwater data transfer standard. National Groundwater Committee Working Group on National Groundwater Data Standards, Canberra, Australia

  • Orban Ph, Brouyère S, Cobreanu H, Dassargues A (2004) Large-scale groundwater flow and transport modelling: methodology and application to the Meuse Basin, Belgium. Proceedings of GQ2004, the 4th International Groundwater Quality Conference, Waterloo, Canada, July 2004, IAHS Publ. 297, IAHS, Wallingford, UK, pp 489-495

  • Popescu IC, Dachy M, Brouyère S, Dassargues A (2004) Tests d’une méthode de cartographie de la vulnérabilité intrinsèque applicable aux nappes aquifères de la Région Wallonne: application à l’aquifère calcaire du Néblon [Cartography of vulnerability test for aquifers of the Walloon Region: application to the Néblon limestone aquifer]. Convention Walloon Region, GEOMAC (Hydrogeology), University of Liège, Liège, Belgium

  • Sen M, Duffy T (2005) GeoSciML: development of a generic geoscience markup language. Comput Geosci 31:1095–1103

    Article  Google Scholar 

  • Simons B, Duffy T, Boisvert E, Johnson B, Brodaric B, Laxton J, Cox S, Richard S (2006) GeoSciML: enabling the exchange of geological map data. AESC, Melbourne, Australia

    Google Scholar 

  • Strassberg G (2005) A geographic data model for groundwater systems, PhD Thesis, University of Texas, Austin, TX

  • Vogt WGG-CJ (2002) Guidance document for implementing the GIS elements of the WFD, Land Management Unit, Institute for Environment and Sustainability, Joint Research Centre, European Commission, Brussels

  • Wojda P (2009) Hydrogeological data modelling in groundwater studies. PhD Thesis, University of Liege, Belgium

  • Wojda P, Gogu R, Brouyère S (2006) Conceptual model of hydrogeological information for a GIS-based decision support system in management of artificial recharge in semi-arid regions. Proceedings of the 11th Int. Con. of the International Association for Mathematical Geology, Université de Liège, Liège, Belgium, 2006

  • Wojda P, Brouyère S, Dassargues A (2010) Geospatial information in hydrogeological studies. In: Malcolm G, Angerson (eds) Encyclopedia of hydrogeological sciences. Wiley, Chichester, UK. doi:10.1002/0470848944.hsa304

    Google Scholar 

Download references

Acknowledgements

The authors acknowledge the Ministry of the Walloon Region (Direction Générale de l’Agriculture, des Ressources Naturelles et de l’Environnement) for the HydroCube project funding and the EU FP6 (GOCE) Project No. 518118-1 GABARDINE for the recent developments. Extensive contributions made to the development, tests, encodings and interface implementation of HydroCube by Ileana-Cristina Popescu, Marie Dachy, Ingrid Ruthy, and many colleagues from other Walloon universities are also acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Serge Brouyère.

Electronic supplementary materials

Below is the link to the electronic supplementary material.

ESM 1

(PDF 113 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wojda, P., Brouyère, S., Derouane, J. et al. HydroCube: an entity-relationship hydrogeological data model. Hydrogeol J 18, 1953–1962 (2010). https://doi.org/10.1007/s10040-010-0653-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10040-010-0653-6

Keywords

Navigation