Skip to main content

Advertisement

Log in

Use of stream response functions to determine impacts of replacing surface-water use with groundwater withdrawals

Utilisation de fonctions-réponse de cours d’eau pour déterminer les impacts du remplacement de l’eau de surface par des prélèvements sur la nappe

El uso de las funciones de respuesta en una corriente para determinar los impactos de reemplazar el uso de aguas superficiales con extracciones de aguas subterráneas

用河流响应函数确定以地下水开采取代地表水直接利用所产生的影响

Utilização de funções de resposta de caudais para determinação dos impactes provocados pela substituição do consumo de água de origem superficial por águas subterrâneas

  • Paper
  • Published:
Hydrogeology Journal Aims and scope Submit manuscript

Abstract

A regional-scale numerical groundwater model is used to study the impacts of replacing surface-water use with groundwater wells to improve low-flow stream conditions for endangered species within the Bertrand and Fishtrap watersheds, southern British Columbia, Canada and Washington, USA. Stream response functions ranging from 0 to 1.0 were calculated for individual wells placed within a steady-state groundwater flow model at varying distances from the streams to determine the impact that these replacement wells, operating under sustained pumping rates, would have on summer instream flows. Lower response ratios indicate groundwater pumping will have less of an impact on streamflow than taking an equivalent amount of water directly from a surface-water source. Results show that replacing surface-water use with groundwater withdrawals may be a viable alternative for increasing summer streamflows. Assuming combined response factors should be ≤0.5 for irrigators to undergo the expense of installing new wells, ~57% of the land area within 0.8 km of Bertrand Creek would be suitable for replacement wells. Similarly, 70% of the land area within 0.8 km of Fishtrap Creek was found to be appropriate. A visual analysis tool was developed using STELLA to allow stakeholders to quickly evaluate the impact associated with moving their water right.

Résumé

On a utilisé un modèle numérique à l’échelle régionale pour étudier les impacts de l’utilisation d’eau de surface à la place d’eau de puits prélevant sur la nappe, afin d’améliorer la condition d’espèces menacées en basses eaux des bassins versants Bertrand et Fishtrap, Whatcom County, Washington, USA. Des fonctions-réponse du cours d’eau s’échelonnant de 0 à 1.0 ont été calculées à l’aide d’un modèle d’écoulement en régime permanent, les puits étant localisés à des distances variables des cours d’eau, pour déterminer l’impact que ces puits prélevant à débit constant auraient sur les débits d’été des cours d’eau. Des ratios bas indiquent que le pompage dans la nappe aura un impact moindre sur le cours d’eau que le prélèvement d’un égal volume en surface. Les résultats montrent que le remplacement de l’eau de surface par de l’eau de nappe peut être une alternative viable pour augmenter le débit d’été des cours d’eau. Supposant des valeurs de réponse combinées t ≤0.5 permettant aux irrigants de supporter la dépense d’installation de nouveaux puits, environ 57% du terrain à 0.8 km de Bertrand Creek conviendrait pour des puits de remplacement. De la même façon, 70% du terrain à 0.8 km de Fishtrap Creek serait approprié. Un outil d’analyse visuelle utilisant STELLA a été développé pour permettre aux ayants droit d’évaluer rapidement l’impact associé à la modification de leur droit d’eau.

Resumen

Se utilizó un modelo numérico de aguas subterráneas a escala regional para estudiar los impactos de reemplazar aguas superficiales con pozos de aguas subterráneas para mejorar las condiciones de caudales bajos de la corriente para las especies en peligro dentro de las cuencas de Bertrand y Fishtrap en Whatcom County, Washington, EEUU. Se calcularon las funciones de respuesta de la corriente entre 0 a 1.0 para pozos individuales colocados dentro del modelo de flujo de aguas subterráneas en estado estacionario a distancias variables desde de las corrientes para determinar el impacto que tendría estos pozos de reemplazo, operando bajo ritmos de bombeo sostenidos, en los caudales entrantes hacia la corriente en verano. Los bajos cocientes de las respuestas indican que el bombeo de aguas subterráneas tendrá un impacto menor en el caudal de la corriente que si toma una cantidad equivalente de agua directamente de la fuente superficial. Los resultados muestran que reemplazar el uso de aguas superficiales con las extracciones de aguas subterráneas puede ser una alternativa viable para incrementar los caudales de la corriente en el verano. Los factores combinados de respuestas supuestas deben ser ≤0.5 para regantes para afrontar los costos de instalación de nuevos pozos, ~57% del área del terreno dentro de 0.8 km del Arroyo Bertrand serían adecuados para pozos de reemplazo. Similarmente, se encontró como apropiado el 70% del área del terreno dentro de 0.8 km del Arroyo Fishtrap. Se desarrolló una herramienta de análisis visual usando STELLA para permitir a los interesados evaluar rápidamente el impacto asociado con la modificación de sus derechos de agua.

摘要

建立了一个区域尺度的地下水数值模型, 用来研究开采地下水取代直接利用地表水的影响, 以改善低流量的河流状况和美国华盛顿州Whatcom县Bertrand 和 Fishtrap 流域濒危动物的生存条件。在与河流相距不同距离的位置, 布置了若干水井, 以恒定抽水量抽水, 用稳态地下水模型计算了范围为0.1~1.0的河流响应函数, 据此判断这些井对夏季河流流量的影响。较低的响应比说明地下水开采对河流流量的影响比直接利用相同流量河水所产生的影响要弱。结果表明, 以地下水开采取代地表水直接利用, 或许是增加夏季河流流量的一种可行的办法。假如灌溉者能承担安装新井的费用时, 响应系数应小于0.5, 那么距Bertrand 河0.8 km内57%的土地可以用井来抽水。同样, 距Fishtrap 河0.8 km内70% 的土地适合建井。运用STELLA设计了一个可视化分析工具, 让利益相关者能够快速评估改变其水权带来的影响。

Resumo

Utilizou-se um modelo numérico de águas subterrâneas à escala regional para avaliar os impactes provocados pela substituição da utilização da água superficial pela água subterrânea, tendo por objectivo melhorar as condições dos habitats das espécies ameaçadas de extinção em rios de baixo caudal, nas bacias hidrográficas de Bertrand e de Fishtrap, em Whatcom County, Washington, EUA. Os valores de funções de resposta entre 0 e 1.0 foram calculados para furos individuais colocados a diferentes distâncias de linhas de água, para determinar o impacte desses furos de substituição quando operados sob taxas de extracção controladas, de forma a obter caudais ecológicos no Verão. As razões mais baixas das funções de resposta indicam um impacte menor quando se recorre a extracção das águas subterrâneas relativamente a uma quantidade equivalente de água de origem superficial. Os resultados indicam que substituir a utilização da água de origem superficial pela extracção de água subterrânea pode ser uma alternativa viável, durante o Verão, para suprir o aumento das necessidades de água. Assumindo que os factores de resposta combinados devem ser ≤0.5 para regantes que suportem os custos da instalação de novos furos, ~57% da área de território dentro de 0.8 km da bacia do Ribeiro Bertrand seria adequada para a substituição pelos furos. Da mesma forma, avalia-se que 70% da área de território dentro de 0.8 km do Ribeiro de Fishtrap seria também apropriada para essa substituição. Desenvolveu-se uma ferramenta de análise visual, o programa STELLA, que permite aos decisores avaliar com rapidez os impactes associados à implementação da correcta utilização da água.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Notes

  1. Fishtrap Creek flows were not corrected as discussed previously.

References

  • Adelsman H (2003) Washington water acquisition program finding water to restore streams. Publ. 03-11-005, Washington State Department of Ecology, Olympia, WA, 136 pp. http://www.ecy.wa.gov/biblio/0311005.html. Cited January 2010

  • Allen DM, Chesnaux R, McArthur S (2007) Nitrate transport modeling within the Abbotsford-Sumas Aquifer, British Columbia, Canada and Washington State, USA. Department of Earth Sciences, Simon Fraser University, Burnaby, BC, 181 pp

    Google Scholar 

  • Armstrong JE, Crandell DR, Easterbrook DJ, Noble JB (1965) Late Pleistocene stratigraphy and chronology in southwestern British Columbia and northwestern Washington. Geol Soc Am Bull 76:321–330

    Article  Google Scholar 

  • Barlow PM, Ahlfeld DP, Dickerman DC (2003) Conjunctive-management models for sustained yield of stream aquifer systems. J Water Resour Plan Manage 129(1):35–48

    Article  Google Scholar 

  • Berg MA, Allen DM (2007) Low flow variability in groundwater-fed streams. Can Water Resour J 32(3):227–245

    Article  Google Scholar 

  • Boyle CA, Lavkulich L, Schreier H, Kiss E (1997) Changes in land cover and subsequent effects on lower Fraser Basin ecosystems from 1827 to 1990. Environ Manage 21:185–196

    Article  Google Scholar 

  • Buchanan TJ, Somers WP (1969) Discharge measurements at gaging stations. In: Applications of hydraulics, US Geol Surv Tech Water Resour Invest, Chap. A8, Book 3, US Geological Survey, Reston, VA, 65 pp. http://pubs.usgs.gov/twri/twri3a8/. Cited January 2010

  • Chen X, Chen X (2003) Stream water infiltration, bank storage, and storage zone changes due to stream-stage fluctuations. J Hydrol 280:246–264

    Article  Google Scholar 

  • Cooper HH, Rorabaugh MI (1963) Groundwater movements and bank storage due to flood stages in surface streams. US Geol Surv Water Suppl Pap 1536-J:343–366

    Google Scholar 

  • Cosgrove DM, Johnson GS (2004) Transient response functions for conjunctive water management in the Snake River Plain, Idaho. J Am Water Resour Assoc 40(6):1469–1482

    Article  Google Scholar 

  • Cox SE, Kahle SC (1999) Hydrogeology, ground-water quality, and sources of nitrate in lowland glacial aquifers of Whatcom County, Washington, and British Columbia, Canada. US Geol Surv Water Resour Invest Rep 98-4195

  • Cox SE, Simonds FW, Doremus L, Huffman RL, Defawe RM (2005) Ground water/surface water interactions and quality of discharging ground water in streams of the Lower Nooksack River Basin, Whatcom County, Washington. US Geol Surv Sci Invest Rep 2005-5225, 56 pp. http://pubs.usgs.gov/sir/2005/5255/. Cited January 2010

  • Culhane T (1993) Whatcom County hydraulic continuity investigation-part 1, critical well/stream separation distances for minimizing stream depletion. Open File Technical Report 93-08, Washington State Department of Ecology, Olympia, WA, 20 pp. http://www.ecy.wa.gov/biblio/9308.html. Cited January 2010

  • DHI (2009) MIKE SHE modeling software. DHI, Hørsholm, Denmark. http://www.dhigroup.com/Software/WaterResources/MIKESHE.aspx. Cited January 2010

  • ESRI (2007) GIS and mapping software. ESRI, Redlands, CA. http://www.esri.com/. Cited January 2010

  • Hamilton TS, Ricketts BD (1994) Contour map of the sub-Quaternary bedrock surface, Strait of Georgia and Fraser Lowland. In: Monger JWH (ed) Geology and geological hazards of the Vancouver region, southwestern British Columbia. Geol Surv Can Bull 481:193–196

  • Hantush MM (2005) Modeling stream-aquifer interactions with linear response functions. J Hydrol 311:59–79

    Article  Google Scholar 

  • Harbaugh AW (1990) A computer program for calculating subregional water budgets using results from the U.S. Geological Survey modular three-dimensional ground-water flow model. US Geol Surv Open-File Rep 90-392, 46 pp

  • Harbaugh AW, Banta ER, Hill MC, McDonald MG (2000) MODFLOW-2000, the U.S. Geological Survey modular ground-water model: user guide to modularization concepts and the ground-water flow process. US Geol Surv Open-File Rep 00-92. http://water.usgs.gov/nrp/gwsoftware/modflow2000/ofr00-92.pdf. Cited January 2010

  • isee Systems (2007) STELLA, version 9.0.3. isee Systems, Lebanon, NH, http://www.iseesystems.com/. Cited January 2010

  • Jenkins CT (1968a) Techniques for computing rate and volume of stream depletion by wells. Ground Water 6(2):37–46

    Article  Google Scholar 

  • Jenkins CT (1968b) Computation of rate and volume of stream depletion by wells. In: Hydrologic analysis and interpretation, Chap. D1, Book 4, , Tech Water Resour Invest, US Geological Survey, Reston, VA, 21 pp. http://pubs.usgs.gov/twri/twri4d1/. Cited January 2010.

  • Leake SA, Reeves HW (2008) Use of models to map potential captures of surface water by ground-water withdrawals. In: Proceedings of MODFLOW and More: Ground Water and Public Policy, The Colorado School of Mines, Golden, CO, USA, 18–21 May 2008, pp 204–208

  • Leake SA, Green W, Watt D, Weghorst P (2008a) Use of superposition models to simulate possible depletion of Colorado River water by ground-water withdrawal. US Geol Surv Sci Invest Rep 2008-5189, 25 pp

  • Leake SA, Pool DR, Leenjouts JM (2008b) Simulated effects of ground-water withdrawals and artificial recharge on discharge to streams, springs, and riparian vegetation in the Sierra Vista Subwatershed of the Upper San Pedro Basin, southeastern Arizona. US Geol Surv Sci Invest Rep 2008-5207, 14 pp

  • Kemblowski M, Asefa T, Haile-Selassje S (2002) Ground water quantity report for WRIA 1, Phase II. WRIA 1 Watershed Management Project., US Geological Survey, Reston, VA, http://wa.water.usgs.gov/projects/wria01/. Cited January 2010

  • Maddock III T, Lacher LJ (1991) MODRSP: A program to calculate drawdown, velocity, storage, and capture response functions for multi-aquifer systems. Report No. HWR 91-020, Dept. of Hydrology and Water Resources, University of Arizona, Tucson, AZ

  • McKenzie C (2007) Measurements of hydraulic conductivity using slug tests in comparison to empirical calculations for two streams in the Pacific Northwest, USA. MSc Thesis, Washington State University, USA

  • Mitchell RJ, Babcock RS, Gelinas S, Nanus L, Stasney DE (2003) Nitrate distributions and source identification in the Abbotsford-Sumas Aquifer, northwestern Washington. J Environ Qual 32(3):789–800

    Article  Google Scholar 

  • Moench AF, Barlow PM (2000) Aquifer response to stream-stage and recharge variations. I. Analytical step-response functions. J Hydrol 230:192–210

    Article  Google Scholar 

  • Morel-Seytoux HJ (1975) A combined model of water table and river stage evolution. Water Resour Res 11(6):968–972

    Article  Google Scholar 

  • National Climatic Data Center (2007a) 2006 and 2007 hourly precipitation data for Bellingham International Airport, WA. NOAA, Silver Spring, MD. http://cdo.ncdc.noaa.gov/qclcd/QCLCD?prior=N. Cited January 2010

  • National Climatic Data Center (2007b) 2006 annual climatological summary for Clearbrook, WA. NOAA, Silver Spring, MD. http://www7.ncdc.noaa.gov/CDO/cdo. Cited January 2010

  • Perkins SP, Koussis AD (1996) Stream-aquifer interaction model with diffusive water routing. J Hydraul Eng 122(4):210–218

    Article  Google Scholar 

  • Pinder GF, Sauer SP (1971) Numerical simulation of flood wave modification due to bank storage effects. Water Resour Res 7(1):63–70

    Article  Google Scholar 

  • Pruneda EB (2007) Use of stream response functions and STELLA software to determine impacts of replacing surface water diversions with groundwater pumping withdrawals on instream flows within the Bertrand Creek and Fishtrap Creek watersheds, Washington State, USA. MSc Thesis, Washington State University, USA, 70 pp

  • Saquillace PJ (1996) Observed and simulated movement of bank-storage water. Ground Water 34(1):121–134

    Article  Google Scholar 

  • Schroeder PR, Dozier TS, Zappi PA, McEnroe BM, Sjostrom JW, Peyton RL (1994) The hydrologic evaluation of landfill performance (HELP) model: engineering documentation for version 3. EPA/600/R-94/168b, US EPA, Washington, DC

  • Scibek J, Allen DM (2005) Numerical groundwater flow model of the Abbotsford-Sumas Aquifer, central Fraser lowland of BC, Canada, and Washington State, US. Department of Earth Sciences, Simon Fraser University, Burnaby, BC

    Google Scholar 

  • Scibek J, Allen DM (2006) Comparing modelled responses of two high permeability, unconfined aquifers to predicted climate change. Global Planet Change 50:50–62

    Article  Google Scholar 

  • Sharp MJ (1977) Limitations of bank-storage model assumptions. J Hydrol 35:31–47

    Article  Google Scholar 

  • Sibson R (1981) Interpolating multivariate data. Wiley, New York, pp 21–36

    Google Scholar 

  • WAC 173-501-030 (1985) Establishment of instream flows. Washington State Legislature, Olympia, WA. http://apps.leg.wa.gov/WAC/default.aspx?cite=173-501-030. Cited January 2010

  • Waterloo Hydrogeologic (2000) Visual MODFLOW v 3.0 user manual. Waterloo Hydrogeologic, Waterloo, ON, Canada

  • Waterloo Hydrogeologic (2006) Visual MODFLOW v. 4.1 user’s manual. Waterloo Hydrogeologic, Waterloo, ON, Canada

  • Welch K, Willing P, Greenberg J, Barclay M (1996) Nooksack River Basin pilot low flow investigation. Water Resources Consulting Team and Cascades Environmental Services, Portland, OR

  • Winter TC, Harvey JW, Franke OL, Alley WM (1998) Ground and surface water a single resource. US Geol Surv Circ 1139, 79 pp. http://pubs.usgs.gov/circ/circ1139/. Cited January 2010

  • Wubbena R, Powell R, O’Rourke K et al (2004) Bertrand Watershed Improvement District comprehensive irrigation district management plan. Economic and Engineering Services, Bellvue, WA

Download references

Acknowledgements

This research was funded by the Department of Public Works, Whatcom County, Washington through a grant to the State of Washington Water Research Center. We thank Henry Bierlink and Karen Steensma for their knowledge on the study area and assistance in gaining land access, as well as all landowners who permitted access to their land for this research and Erin Moilanen for her assistance in developing the visual analysis tool.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Diana M. Allen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pruneda, E.B., Barber, M.E., Allen, D.M. et al. Use of stream response functions to determine impacts of replacing surface-water use with groundwater withdrawals. Hydrogeol J 18, 1077–1092 (2010). https://doi.org/10.1007/s10040-010-0591-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10040-010-0591-3

Keywords

Navigation