Skip to main content
Log in

Assessment of the role of facies heterogeneity at the fine scale by numerical transport experiments and connectivity indicators

Evaluation du rôle de l’hétérogénéité des faciès à petite échelle à l’aide de modélisation numérique du transport et d’indicateurs de connectivité

Evaluación del rol de la heterogeneidad de las facies a una escala fina por experimentos numéricos de transporte e indicadores de conectividad

通过数值运移模拟实验和连通性指标对精细尺度下相非均质性作用的评估

Avaliação da influência da heterogeneidade de fácies à escala local, recorrendo a modelos numéricos de transporte e indicadores de conectividade

  • Paper
  • Published:
Hydrogeology Journal Aims and scope Submit manuscript

Abstract

The heterogeneity of facies at the scale of individual lithological levels controls, at a macroscopic scale, water flow and contaminant transport in porous sediments. In particular the presence of organized features such as permeable connected levels, has a significant effect on travel times and dispersion. Here, the effects of facies heterogeneity on flow and transport are studied for three blocks, whose volume is of the order of a cubic meter, dug from alluvial sediments from the Ticino valley (Italy). Using the results of numerical tracer experiments on these domains, the longitudinal dispersion coefficient is computed with an Eulerian approach based on the fit of the breakthrough curves with the analytical solution of the convective-dispersive transport equation. Moreover, the dispersion tensor is computed with a Lagrangian approach from the second order moments of particle distributions. Three types of connectivity indicators are tested: (1) connectivity function; (2) flow, transport and statistical connectivity; (3) original (intrinsic, normal and total) indicators of facies connectivity. The connectivity function provides the most complete information. Some of the transport and statistical connectivity indicators are correlated with dispersivity. The simultaneous analysis of the three indicators of facies connectivity emphasizes the fundamental geometrical features that control transport.

Résumé

L’hétérogénéité des faciès à l’échelle des unités lithologiques contrôle à l’échelle macroscopique le flux d’eau et du transport de contaminant dans les sédiments poreux. La présence de structures organisées telles que des horizons connectés perméables, a en particulier un effet significatif sur les temps de transit et sur la dispersion. Les effets de l’hétérogénéité des faciès sur les écoulements et le transport sont étudiés sur trois blocs, dont le volume est de l’ordre du mètre cube, et le matériel issu des sédiments alluviaux de la vallée du Tessin (Italie). A partir des résultats d’essais numériques de traçage sur ces domaines, le coefficient de dispersion longitudinale est calculé selon une approche Eulérienne basée sur le calage des courbes de restitution à l’aide de solution analytique de l’équation du transport advectif et dispersif. De plus, le tenseur de la dispersion est déterminé à l’aide de l’approche Lagrangienne du deuxième ordre des moments de la distribution des particules. Trois types d’indicateurs de connectivité sont testés: (1) fonction de connectivité, (2) connectivité statistique de l’écoulement et du transport, (3) indicateurs originaux (intrinsèque, normaux et totaux) de connectivité des faciès. La fonction de connectivité fournit l’information la plus complète. Certains des indicateurs de la connectivité statistique et du transport sont corrélés avec la dispersivité. L’analyse simultanée des trois indicateurs de la connectivité des faciès met en évidence les structures fondamentales géométriques qui contrôlent le transport.

Resumen

La heterogeneidad de las facies en escala de los niveles litológicos individuales controla, a escala macroscópica, el flujo de agua y el transporte de contaminantes en los sedimentos porosos. En particular la presencia de aspectos organizados, tales como niveles permeables conectados, tienen un efecto significativo en los tiempos de tránsito y dispersión. Aquí, se estudian los efectos de la heterogeneidad de las facies sobre el flujo y transporte para tres bloques, cuyo volumen es del orden de un metro cúbico, excavados en sedimentos aluviales en el valle de Ticino (Italia). Usando los resultados de trazadores de experimentos numéricos sobre estos dominios, se calcula el coeficiente de dispersión longitudinal con una aproximación Euleriana basada en el ajuste de las curvas de rupturas con la solución analítica de la ecuación de transporte convectiva - dispersiva. Además, se calcula el tensor de dispersión con una aproximación Lagrangiana a partir de momentos de Segundo orden de la distribución de las partículas. Se testearon tres tipos de indicadores de conectividad: (1) la función de conectividad; (2) flujo, transporte y conectividad estadística; (3) indicadores originales de conectividad de las facies (intrínseco, normal y total). La función de conectividad provee la información más completa. Algunos de los indicadores de transporte y de conectividad estadística se correlacionan la dispersividad. El análisis simultáneo de los tres indicadores de conectividad de las facies enfatiza los aspectos geométricos fundamentales que controlan el transporte.

摘要

单一岩性水平上相的非均质性控制着宏观尺度下孔隙沉积中的水流和污染物质运移。尤其是规律性特征的出现, 如相互关联的渗透层, 对运移时间和弥散有显著影响。本文选取意大利Ticino峡谷冲积物中的三个岩块, 其体积大约为一个立方米级, 研究了非均质性对于流动和运移的影响。用对流弥散运移方程的数值解对穿透曲线进行拟合, 在此基础之上根据岩石的数值示踪实验结果, 采用欧拉方法计算纵向弥散系数。此外, 根据粒子分布的二阶距采用拉格朗日方法计算了弥散张量。测试了三种连通性指标 : (1) 连通函数 ; (2) 流动、运移和连通性统计 ; (3) 各相连接性的初始指标 (内在的、标准的及整体的) 。连通函数给出了最为全面的信息。某些运移和统计连通性指标与弥散度相关。三种连通性指标的模拟分析强调了基本几何特性对运移的控制作用。

Resumo

A heterogeneidade de fácies à escala de níveis litológicos individuais controla o escoamento e o transporte em sedimentos porosos à escala macroscópica. No caso particular da presença de uma rede hierarquizada de descontinuidades, tal como na presença de níveis permeáveis interconectados, é exercida uma influência significativa nos tempos de residência e na dispersão. Os efeitos da heterogeneidade de fácies no escoamento e transporte foram estudados para três blocos, cujo volume é da ordem do metro cúbico, escavados em sedimentos aluvionares do vale de Ticino, em Itália. Usando os resultados de experiências com traçadores numéricos nestes domínios, os coeficientes de dispersão longitudinais foram calculados utilizando uma abordagem Euleriana, baseada na calibração de curvas de recuperação, recorrendo a uma solução analítica da equação de transporte convectivo e dispersivo. Além disso, o tensor da dispersão foi também calculado, através de uma abordagem Lagrangiana, a partir do segundo momento da distribuição de partículas. São testados três tipos de indicadores de conectividade: (1) função de conectividade; (2) escoamento, transporte e conectividade estatística; (3) indicadores de conectividade original de fácies (intrínseca, normal e total). A função de conectividade forneceu a informação mais completa. Alguns dos indicadores de conectividade estatística e de transporte apresentam correlação com a dispersividade. A análise simultânea dos três indicadores da conectividade de fácies põe em evidência as características geométricas que controlam o transporte.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Allard D (1994) Simulating a geological lithofacies with respect to connectivity information using the truncated Gaussian model. In: Armstrong M, Dowd PA (eds) Geostatistical Simulations: Proceedings of the Geostatistical Simulation Workshop, Fontainbleau, France, 27-28 May 1993. Kluwer, Norwell, MA

    Google Scholar 

  • Allard D, Group H (1993) On the connectivity of two random set models: the truncated Gaussian and the Boolean. In: Soares A (ed) Geostatistics Tróia ‘92. Kluwer, Dordrecht, The Netherlands

    Google Scholar 

  • Anderson MP (1989) Hydrogeological facies models to delineate large-scale spatial trends in glacial and glacio-fluvial sediments. Geol Soc Am Bull 101:501–511

    Article  Google Scholar 

  • Anderson MP (1997) Characterization of geological heterogeneity. In: Dagan G, Neuman SP (eds) Subsurface flow and transport: a stochastic approach. Cambridge University Press, Cambridge, UK

    Google Scholar 

  • Anderson MP, Woessner WW (1991) Applied groundwater modeling: simulation of flow and advective transport. Academic, San Diego, CA

    Google Scholar 

  • Bersezio R, Bini A, Giudici M (1999a) Effects of sedimentary heterogeneity on groundwater flow in a quaternary pro-glacial delta environment: joining facies analysis and numerical modeling. Sediment Geol 129:327–344

    Article  Google Scholar 

  • Bersezio R, Bussolini C, Pagani F et al (1999b) The Pleistocene fluvio-glacial sediments of the Lower Ticino valley: stratigraphy, sedimentary features and relations with the hydrogeological properties at a gravel pit, south of Lake Verbano. Geol Insubrica 4:49–60

    Google Scholar 

  • Cortis A, Knudby C (2006) A continuous time random walk approach to transient flow in heterogeneous porous media. Water Resour Res 42(10), W10201.1–W10201.5. doi:10.1029/2006WR005227

    Google Scholar 

  • Dagan G (1988) Time-dependent macrodispersion for solute transport in anisotropic heterogeneous aquifers. Water Resour Res 26:1281–1290

    Google Scholar 

  • Dagan G (1989) Flow and transport in porous formations. Springer, New York

    Google Scholar 

  • Dagan G (1990) Transport in heterogeneous porous formations: spatial moments, ergodicity, and effective dispersion. Water Resour Res 26:1281–1290

    Google Scholar 

  • Deutsch CV (1998) Fortran programs for calculating connectivity of three-dimensional numerical models and for ranking multiple realizations. Comp Geosci 24:69–76

    Article  Google Scholar 

  • Deutsch CV, Journel AG (1992) Geostatistical software library and user’s guide. Oxford University Press, New York

    Google Scholar 

  • Felletti F, Bersezio R, Giudici M (2006) Geostatistical simulation and numerical upscaling, to model groundwater flow in a sandy-gravel, braided river, aquifer analogue. J Sediment Res 76(11):1215–1229. doi:10.2110/jsr.2006.091

    Google Scholar 

  • Fernandez Garcia D, Sánchez-Vila X, Illangasekare TH (2002) Convergent-flow tracer tests in heterogeneous media: combined experimental−numerical analysis for determination of equivalent transport parameters. J Contam Hydrol 57:129–145

    Article  Google Scholar 

  • Fleckenstein JH, Fogg GE (2008) Efficient upscaling of hydraulic conductivity in heterogeneous alluvial aquifers. Hydrogeol J 16(7):1239–1250. doi:10.1007/s10040-008-0312-3

    Google Scholar 

  • Fogg GE (1986) Groundwater flow and sand body interconnectedness in a thick, multiple-aquifer system. Water Resour Res 22:679–694

    Article  Google Scholar 

  • Frippiat CC, Illangasekare TH, Zyvoloski GA (2009) Anisotropic effective medium solutions of head and velocity variance to quantify flow connectivity. Adv Water Resour 32(2):239–249. doi:10.1016/j.advwatres.2008.11.001

    Google Scholar 

  • Giudici M, Vassena C (2007) About the symmetry of the upscaled equivalent transmissivity tensor. Math Geol 39(4):399–408. doi:10.1007/s11004-007-9101-0

    Google Scholar 

  • Gómez-Hernández JJ, Wen XH (1998) To be or not to be multi-Gaussian? A reflection on stochastic hydrogeology. Adv Water Resour 21:47–61

    Article  Google Scholar 

  • Guardiano F, Srivastava M (1993) Multivariate geostatistics: beyond bivariate moments. In: Soares A (ed) Geostatistics Tróia ’92. Kluwer, Dordrecht, The Netherlands

    Google Scholar 

  • Harter T (2005) Finite-size scaling analysis of percolation in three-dimensional correlated binary Markov chain random fields. Phys Rev E. doi:10.1103/PhysRevE.72.026120

    Google Scholar 

  • Hubert J (1970) Effect of injection speed on the tracer concentration curves. Nukleonika 15:371–376

    Google Scholar 

  • Jussel P, Stauffer S, Dracos T (1994) Transport modeling in heterogeneous aquifers: 1. statistical description and numerical generation of gravel deposits. Water Resour Res 30:1803–1817

    Article  Google Scholar 

  • Kerrou J, Renard P, Hendricks Franssen HJ et al (2008) Issues in characterizing heterogeneity and connectivity in non-multiGaussian media. Adv Water Resour 31(1):147–159. doi:10.1016/j.advwatres.2007.07.002

    Google Scholar 

  • Knudby C, Carrera J (2005) On the relationship between indicators of geostatistical, flow and transport connectivity. Adv Water Resour 28(4):405–421. doi:10.1016/j.advwatres.2004.09.001

    Google Scholar 

  • Kreft A, Zuber A (1978) On the physical meaning of the dispersion equation and its solutions for different initial and boundary conditions. Chem Eng Sci 33:1471–1480

    Article  Google Scholar 

  • LaBolle EM, Fogg GE (2001) Role of molecular diffusion in contaminant migration and recovery in an alluvial aquifer system. Transp Porous Med 42:155–179

    Article  Google Scholar 

  • Martinez-Landa L, Carrera J (2005) An analysis of hydraulic conductivity scale effects in granite (Full-scale Engineered Barrier Experiment (FEBEX), Grimsel, Switzerland). Water Resour Res 41, W03006. doi:10.1029/2004WR003458

    Google Scholar 

  • Meier PM, Carrera J, Sánchez-Vila X (1999) A numerical study on the relationship between transmissivity and specific capacity in heterogeneous aquifers. Ground Water 37:611–617

    Article  Google Scholar 

  • Nield DA (2008) Connectivity and effective hydraulic conductivity. Transp Porous Med 74(2):129–132. doi:10.1007/s11242-007-9185-5

    Google Scholar 

  • Pardo-Igùzquiza E, Dowd PA (2003) CONNEC3D: a computer program for connectivity analysis of 3D random set models. Comp Geosci 29(6):775–785. doi:10.1016/S0098-3004(03)00028-1

    Google Scholar 

  • Parker JC, van Genuchten MTh (1984) Flux-Averaged and volume-averaged concentrations in continuum approaches to solute transport. Water Resour Res 20:866–872

    Article  Google Scholar 

  • Poeter EP, Townsend P (1994) Assessment of critical flow path for improved remediation management. Ground Water 32:439–447

    Article  Google Scholar 

  • Renard Ph, Caers J (2008) Conditioning facies simulations with connectivity data. In: Proceedings of the VIII Geostatistical Congress. Santiago, Chili, December 2008

  • Ritzi RW, Dominic DF, Brown NR et al (1995) Hydrofacies distribution and correlation in the Miami Valley aquifer system. Water Resour Res 31:3271–3281

    Article  Google Scholar 

  • Samouelian A, Vogel HJ, Ippisch O (2007) Upscaling hydraulic conductivity based on the topology of the sub-scale structure. Adv Water Resour 30(5):1179–1189. doi:10.1016/j.advwatres.2006.10.011

    Google Scholar 

  • Sánchez-Vila X, Girardi JP, Carrera J (1996) Scale effects in transmissivity. J Hydrogeol 183:1–22

    Article  Google Scholar 

  • Sánchez-Vila X, Guadagnini A, Carrera J (2006) Representative hydraulic conductivities in saturated groundwater flow. Rev Geophys 44, RG3002. doi:10.1029/2005RG000169

    Google Scholar 

  • Schad H, Teutsch G (1994) Effects of the investigation scale on pumping tests results in heterogeneous porous aquifers. J Hydrol 159:61–77

    Article  Google Scholar 

  • Scheibe T, Yabusaki S (1998) Scaling of flow and transport behavior in heterogeneous groundwater systems. Adv Water Resour 22:223–238

    Article  Google Scholar 

  • Stauffer D, Aharony A (1994) Introduction to percolation theory, 2nd edn., Taylor and Francis, London

  • Strebelle S (2002) Conditional simulation of complex geological structures using multiple-point statistics. Math Geol 34:1–21

    Article  Google Scholar 

  • Thompson AFB, Gelhar LW (1990) Numerical simulation of solute transport in three-dimensional randomly heterogeneous porous media. Water Resour Res 26:2541–2562

    Article  Google Scholar 

  • Trinchero P, Sánchez-Vila X, Fernàndez-Garcia D (2008) Point-to-point connectivity, an abstract concept or a key issue for risk assessment studies? Adv Water Resour 31(12):1742–1753. doi:10.1016/j.advwatres.2008.09.001

    Google Scholar 

  • Western A, Bloschl G, Grayson RB (1998) How well do indicator variograms capture the spatial connectivity of soil moisture? Hydrol Process 12:1851–1868

    Article  Google Scholar 

  • Western A, Bloschl G, Grayson RB (2001) Toward capturing hydrologically significant connectivity in spatial patterns. Water Resour Res 37:83–97

    Article  Google Scholar 

  • White CD, Horne RN (1987) Computing absolute transmissivity in the presence of fine scale heterogeneity. Soc Pet Eng 16011:209–221

    Google Scholar 

  • Zappa G, Bersezio R, Felletti F et al (2006) Modeling heterogeneity of gravel-sand, braided stream, alluvial aquifers at the facies scale. J Hydrol 325(1–4)134–153. doi:10.1016/j.jhydrol.2005.10.016

    Google Scholar 

  • Zinn B, Harvey CF (2003) When good statistical models of aquifer heterogeneity go bad: a comparison of flow, dispersion, and mass transfer in connected and multivariate Gaussian hydraulic conductivity fields. Water Resour Res 39(3), 1051. doi:10.1029/2001WR001146

    Google Scholar 

Download references

Acknowledgements

The authors thank G. Fogg and T. Ginn (UC Davis, USA), P. Renard (Université de Neuchâtel, CH), T. Scheibe (Pacific Northwest National Laboratory, USA) and R. Bersezio, F. Felletti and D. Dell’Arciprete (Università degli Studi di Milano, I) for discussions. This work was financially supported by the MIUR and the University of Milano through the research projects of national interest “Integrating geophysical and geological data for modeling flow in some aquifer systems of alpine and apenninic origin between Milano and Bologna” (PRIN 2005) and “Integrated geophysical, geological, petrographical and modelling study of alluvial aquifer complexes characteristic of the Po plain subsurface: relationships between scale of hydrostratigraphic reconstruction and flow models” (PRIN 2007) - Principal investigator: M. Giudici. J. Carrera and two anonymous reviewers are gratefully acknowledged for their constructive criticism which helped us to revise and improve the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mauro Giudici.

Appendix

Appendix

This appendix is devoted to illustrating the significance of connectivity indicators for facies, through the analysis of these indicators for some limiting cases.

If Ω p consists of individual points only, then \( C_p^t = {C_p} = C_p^* = 0 \); if Ω p is a single connected set, then \( {S_p} = {N_p}\left( {{N_p} - 1} \right) \), so that \( C_p^* = 1 \), whereas

$$ C_p^t = {N_p}\left( {{N_p} - 1} \right) \cdot {\left[ {N\left( {N - 1} \right)} \right]^{ - 1}} $$

and

$$ {C_p} = {N_p}\left( {{N_p} - 1} \right) \cdot {\left[ {\sum\limits_{q = 1}^{{N^{\left( {prop} \right)}}} {\sum\limits_{c = 1}^{N_q^{\left( {conn} \right)}} {N_q^{(c)}\left( {N_q^{(c)} - 1} \right)} } } \right]^{ - 1}}. $$

Another simple example helps in the understanding of these indicators. Assume that there are two facies only: facies 1 is the dominant background facies given by a single connected component, whereas facies 2 consists of equally-sized blocks, i.e., \( N_2^{(c)} = N_2^{(0)} = {{{N_2}} \mathord{\left/{\vphantom {{{N_2}} {N_2^{\left( {conn} \right)}}}} \right.} {N_2^{\left( {conn} \right)}}} = {{{f_2}N} \mathord{\left/{\vphantom {{{f_2}N} {N_2^{\left( {conn} \right)}}}} \right.} {N_2^{\left( {conn} \right)}}}\quad \forall c = 1, \ldots, N_2^{\left( {conn} \right)} \). Then

$$ {S_1} = {N_1}\left( {{N_1} - 1} \right) = {f_1}N\left( {{f_1}N - 1} \right) $$

and

$$ {S_2} = N_2^{\left( {conn} \right)}N_2^{(0)}\left( {N_2^{(0)} - 1} \right) = {f_2}{N \mathord{\left/{\vphantom {N {N_2^{\left( {conn} \right)}}}} \right.} {N_2^{\left( {conn} \right)}}}\left( {{f_2}N - N_2^{\left( {conn} \right)}} \right), $$

and the denominator of C p is given by \( {N_1}\left( {{N_1} - 1} \right) + N_2^{\left( {conn} \right)}N_2^{(0)}\left( {N_2^{(0)} - 1} \right) \), so that

$$ C_1^t = \frac{{{S_1}}}{{N\left( {N - 1} \right)}} = \frac{{{f_1}\left( {{f_1}N - 1} \right)}}{{\left( {N - 1} \right)}}, $$
$$ {C_1} = \frac{{{f_1}N\left( {{f_1}N - 1} \right)}}{{{f_1}N\left( {{f_1}N - 1} \right) + {f_2}{N \mathord{\left/{\vphantom {N {N_2^{\left( {conn} \right)}}}} \right.} {N_2^{\left( {conn} \right)}}}\left( {{f_2}N - N_2^{\left( {conn} \right)}} \right)}}, $$
$$ C_1^* = {S_1} \cdot {\left[ {{N_1}\left( {{N_1} - 1} \right)} \right]^{ - 1}} = 1, $$
$$ C_2^t = \frac{{{S_2}}}{{N\left( {N - 1} \right)}} = \frac{{{{{f_2}} \mathord{\left/{\vphantom {{{f_2}} {N_2^{\left( {conn} \right)}}}} \right.} {N_2^{\left( {conn} \right)}}}\left( {{f_2}N - N_2^{\left( {conn} \right)}} \right)}}{{\left( {N - 1} \right)}}, $$
$$ {C_2} = \frac{{{f_2}{N \mathord{\left/{\vphantom {N {N_2^{\left( {conn} \right)}}}} \right.} {N_2^{\left( {conn} \right)}}}\left( {{f_2}N - N_2^{\left( {conn} \right)}} \right)}}{{{f_1}N\left( {{f_1}N - 1} \right) + {f_2}{N \mathord{\left/{\vphantom {N {N_2^{\left( {conn} \right)}}}} \right.} {N_2^{\left( {conn} \right)}}}\left( {{f_2}N - N_2^{\left( {conn} \right)}} \right)}} $$

and

$$ C_2^* = \frac{{{S_2}}}{{{N_2}\left( {{N_2} - 1} \right)}} = \frac{{{f_2}N - N_2^{(conn)}}}{{N_2^{(conn)}\left( {{f_2}N - 1} \right)}}. $$

If the domain is so big that \( {f_2}N > > N_2^{\left( {conn} \right)} \) and \( {f_1}N > > N_2^{\left( {conn} \right)} > 1 \), then

$$ C_1^t \cong {f_1}^2,{C_1} \cong \frac{{{f_1}^2N_2^{\left( {conn} \right)}}}{{{f_1}^2N_2^{\left( {conn} \right)} + {f_2}^2}},\;C_1^* = 1 $$

and

$$ C_2^t \cong \frac{{{f_2}^2}}{{N_2^{\left( {conn} \right)}}},{C_2} \cong \frac{{{f_2}^2}}{{{f_1}^2N_2^{\left( {conn} \right)} + {f_2}^2}},C_2^* \cong \frac{1}{{N_2^{\left( {conn} \right)}}}. $$

These formulas show that the total and normal connectivities depend on the facies fractions. On the other hand, for this example, the intrinsic connectivity is 1 for the background facies 1, which was supposed to be distributed in a single percolating cluster, whereas for the embedded facies 2 it is inversely proportional to the number of its connected components.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vassena, C., Cattaneo, L. & Giudici, M. Assessment of the role of facies heterogeneity at the fine scale by numerical transport experiments and connectivity indicators. Hydrogeol J 18, 651–668 (2010). https://doi.org/10.1007/s10040-009-0523-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10040-009-0523-2

Keywords

Navigation