Skip to main content
Log in

Aquifer contamination by chlorinated-VOCs: the case of an urban metropolis megasite overlying the Coastal Plain aquifer in Israel

Pollution d’un aquifère par des VOCs-chlorés: cas d’un site géant d’une métropole urbaine superposée à l’Aquifère de la Paine Côtière d’Israël

Contaminación de un acuífero por compuestos clorinados orgánicos volátiles: El caso de una gran área metropolitana localizada sobre el Acuífero Costero de Israel

含水层氯代挥发性有机物污染 : 位于以色列滨海平原含水层上的某巨型城市污染场地的案例

Contaminação de aquíferos por COVs clorados: O caso de uma mega-área de uma metrópole urbana que se situa sobre o Aquífero da Planície Costeira em Israel

זיהום אקוויפר על ידי חומרים כלורו-אורגניים נדיפים: המקרה של מטרופולין תל אביב הנמצא מעל אקוויפר החוף של ישראל

  • Report
  • Published:
Hydrogeology Journal Aims and scope Submit manuscript

Abstract

The Tel Aviv metropolitan region (200 km2), located on the sandy and phreatic Mediterranean Coastal Plain aquifer in Israel, is an example of a contaminated megasite that is additionally complicated by being part of a densely populated urban environment. Despite being a major source of fresh potable water, no dedicated aquifer monitoring systems exist. The vast majority of tested water supply wells (82% of 90 wells) were found to be contaminated with one or more chlorinated volatile organic compounds (Cl-VOCs) such as trichloroethene and tetrachloroethene, originating from multiple sources, including former industrial sites. Temporal variations in Cl-VOC concentrations in water supply wells were large and unpredictable. Such aquifer contamination requires immediate action in terms of aquifer management and municipal water distribution. To cope with temporal and spatial variations in contaminant concentrations in water supply wells in an area where monitoring wells are absent, aquifer impact areas were defined based on the concentration of the Cl-VOC contaminant in pumping wells that was greatest in relation to its drinking water standard over a 3-year period. Such a map can be used to define water supply treatment and municipal well monitoring requirements, until an adequate monitoring system is established.

Résumé

La région métropolitaine de Tel Aviv (200 km2), située sur l’aquifère sableux et phréatique de la Plaine Côtière Méditerranéenne d’Israël, est un exemple de site géant pollué qui est en outre rendu compliqué par son appartenance à environnement urbain à population dense. Bien qu’il soit une source majeure d’eau douce potable, aucun systèmes de contrôle dédiés à l’aquifère n’existent. La grande majorité des puits d’alimentation en eau testés (82% de 90 puits) ont été trouvé contaminés par un ou plusieurs composés organiques volatils chlorés (Cl-VOCs) tels que le trichloroéthène et le tetrachloroéthène, provenant de sources multiples, incluant d’anciens sites industriels. Des variations temporelles des concentrations en Cl-VOC dans les puits d’alimentation en eau étaient importantes et imprévisibles. Une telle pollution d’un aquifère exige une action immédiate en termes de gestion d’aquifère et de distribution d’eau municipale. Afin de prendre en compte les variations temporelles et spatiales des concentrations de polluant dans les puits d’alimentation en eau dans une région où des puits d’observation sont absents, des zones d’impact sur l’aquifère ont été définies basées sur la concentration du polluant Cl-VOC dans les puits de pompage qui était la plus importante par rapport aux normes d’eau potable pendant une période de trois ans. Une telle carte peut être utilisée pour définir les exigences d’un traitement de l’eau distribuée et d’un contrôle des puits municipaux, jusqu’à ce qu’un système de contrôle adéquat soit installé.

Resumen

La región metropolitana de Tel Aviv (200 km2), que se encuentra sobre el freático y arenoso Acuífero Costero Mediterráneo de Israel, es un ejemplo de una gran area contaminada cuya problemática se ve acentuada por ser también una zona urbana densamente poblada. No obstante ser una importante fuente de agua potable este acuífero carece de un sistema de monitoreo pleaneado. Se encontró que la mayoría de los pozos de producción que se muestrearon (el 82% de 90 pozos) estaban contaminados, por uno o más de uno, de los compuestos clorinados orgánicos volátiles (Cl-VOCs) como tricloroeteno y tetracloroeteno, como resultado de múltiples fuentes de contaminación, incluyendo industrias. Las variaciones temporales de las concentraciones de los Cl-VOCs en los pozos de producción fueron de gran magnitud e impredecibles. Un grado de contaminación tan elevado de un acuífero requiere de una acción inmediata en lo referente a gerenciamiento y distribución del recurso. Para superar la variabilidad temporal y espacial de los contaminantes en los pozos de producción, en un área carente de una red de monitoreo, se definieron áreas de impacto en base al contaminante cuya concentración fue la máxima durante un período de tres años. Mapas similares pueden ser utilizados para definir los tratamientos de agua potable y el monitoreo de pozos de producción necesarios hasta que se establezca un sistema de monitoreo adecuado.

摘要

特拉维夫都市圈 (200 km2) 坐落于以色列地中海滨海平原砂质潜水含水层之上, 是巨型地下水污染场地的一个案例, 由于处于人口密集的城市环境而使问题复杂化。水质分析表明, 大部分供水井 (占90口井中的82%) 为一种或多种氯代挥发性有机物(Cl-VOCs)所污染, 如三氯乙烯和四氯乙烯, 具有多种来源, 包括以前的工业场地。虽然这是饮用淡水的主要来源, 却无专门的含水层水质监测系统。供水井中Cl-VOC浓度随时间变化很大, 且无法预测。对于这种含水层污染, 亟需开展含水层管理和城市给水方面的工作。为应对无监测井地区供水井中污染物浓度的时空变化, 基于三年内抽水井中与饮用水标准关系最为密切的Cl-VOC污染物浓度, 划定了含水层受到影响的范围。这种图件可用来确定供水水质处理和城市监测井的需求, 直到一个合适的监测系统得以建立。

Resumo

A região metropolitana de Tel Aviv (200 km2), situada no aquífero arenoso e freático da Planície Costeira Mediterrânica, em Israel, é um exemplo de uma mega-área contaminada, que ainda é mais complicada pelo facto de se inserir num meio urbano densamente povoado. Não existem sistemas dedicados de monitorização do aquífero, apesar de constituir uma origem principal de água doce potável. A grande maioria das captações de abastecimento testadas (82% de 90 captações) encontrava-se contaminada com um ou mais compostos orgânicos voláteis clorados (Cl-COVs), tais como o tricloroeteno e o tetracloroeteno, originados de várias fontes, incluindo antigos locais industriais. As variações temporais das concentrações de Cl-COV nas captações de abastecimento de água eram elevadas e imprevisíveis. Este tipo de contaminação de aquíferos exige a acção imediata em termos de gestão de aquíferos e de distribuição de água municipal. Para lidar com as variações temporais e espaciais das concentrações dos contaminantes em captações de abastecimento de água numa área onde não existem poços de monitorização, foram definidas áreas de impacte no aquífero, com base na maior concentração do contaminante Cl-COV encontrada nos poços de bombagem relativamente ao valor limite para água para consumo, num período de três anos. O mapa assim obtido pode ser usado para definir o tratamento de água de abastecimento e os requisitos de monitorização das captações municipais, até que se estabeleça um sistema de monitorização adequado.

תקציר

מטרופולין תל אביב (כ-200 קמ“ר) הנמצא מעל אקוויפר החוף של ישראל (אקוויפר פריאטי חולי) הוא דוגמה לאתר מזוהם רחב מימדים (megasite). מלבד היקף הזיהום, מורכבות האתר גדולה בשל מיקומו בתוך אזור עירוני צפוף. למרות שאקוויפר זה מהווה את אחד המקורות העיקריים של מי שתייה בישראל, עדיין לא קיימת באזור מערכת ניטור מתאימה. רוב בארות השתייה שנבדקו (82% מתוך 90 בארות) נמצאו מזוהמות במרכיב אחד או יותר של חומרים כלורו-אורגניים נדיפים (Cl-VOC) כמו טריכלורואתן וטטראכלורואתן. מקור המזהמים הוא במספר רב של מוקדים, כולל מתקנים תעשייתיים שפעלו בעבר. השינויים שנמדדו בריכוזי ה Cl-VOC בבארות מי השתייה לאורך זמן היו גדולים ובלתי ניתנים לחיזוי. זיהום אקוויפר בהיקף שכזה דורש פעולה מיידית בכל הקשור לניהול השימוש בו וחלוקת המים. על מנת להתמודד עם שינויים במרחב ובזמן בריכוזי המזהמים בבארות מי שתייה באזור ללא בארות ניטור, הוגדרו אזורי השפעה בדרגות שונות. האזורים הוגדרו על בסיס ריכוז ה Cl-VOC שהיה הגבוה ביותר בבארות השאיבה, ביחס לתקני מי שתייה, על פני תקופה של 3 שנים. חלוקת האתר המזוהם לאזורי השפעה שונים יכולה לסייע בהגדרת דרישות הטיפול במי השתייה המסופקים ודרישות הניטור של הבארות, זאת עד להקמת מערכת ניטור מתאימה

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abreu LDV, Johnson PC (2005) Effect of vapor source: building separation and building construction on soil vapor intrusion as studied with a three-dimensional numerical model. Environ Sci Technol 39(12):4550–4561

    Article  Google Scholar 

  • Bishop PK, Lerner DN, Jakobsen R, Gosk E, Burston MW, Chen T (1993) Investigation of a solvent-polluted industrial site on a deep sandstone-mudstone sequence in the UK. Part 2. Contaminant sources, distributions, transport and retardation. J Hydrol 149:231–256

    Article  Google Scholar 

  • Burston MW, Nazari MM, Bishop PK, Lerner DN (1993) Pollution of groundwater in the Coventry Region (UK) by chlorinated-hydrocarbon solvents. J Hydrol 149(1–4):137–161

    Article  Google Scholar 

  • Choi JW, Smith JA (2005) Geoenvironmental factors affecting organic vapor advection and diffusion fluxes from the unsaturated zone to the atmosphere under natural conditions. Environ Eng Sci 22(1):95–108

    Article  Google Scholar 

  • Davis GB, Rayner JL, Trefry MG, Fisher SJ, Patterson BM (2005) Measurement and modeling of temporal variations in hydrocarbon vapor behavior in a layered soil profile. Vadose Zone J 4(2):225–239

    Article  Google Scholar 

  • DeVaull G, Ettinger R, Gustafson J (2002) Chemical vapor intrusion from soil or groundwater to indoor air: significance of unsaturated zone biodegradation of aromatic hydrocarbons. Soil Sed Contam 11(4):625–641

    Article  Google Scholar 

  • DOE New York State (2008) Vapor and groundwater sampling results. Environmental Investigations, Endicott, New York. http://www.dec.ny.gov/chemical/24890.html. Cited 29 January 2008

  • Eastwood PR, Lerner DN, Bishop PK, Burston MW (1991) Identifying land contaminated by chlorinated-hydrocarbon solvents. J Inst Water Environ Manage 5(2):163–171

    Article  Google Scholar 

  • Graber ER, Ronen D, Elhanany S, Laor Y, Sorek S, Yakirevich A (2002) Assessment of aquifer contamination in the Nahalat Itzhak area: Tel Aviv. Israel Water Commission, Tel Aviv

  • Heidrich S, Schirmer M, Weiss H, Wycisk P, Grossmann J, Kaschl A (2004a) Regionally contaminated aquifers: toxicological relevance and remediation options (Bitterfeld case study). Toxicology 205(3):143–155

    Article  Google Scholar 

  • Heidrich S, Weiss H, Kaschl A (2004b) Attenuation reactions in a multiple contaminated aquifer in Bitterfeld (Germany). Environ Pollut 129(2):277–288

    Article  Google Scholar 

  • Hers I, Atwater J, Li L, Zapf-Gilje R (2000) Evaluation of vadose zone biodegradation of BTX vapours. J Contam Hydrol 46(3–4):233

    Article  Google Scholar 

  • Hers I, Zapf-Gilje R, Li L, Atwater J (2001) The use of indoor air measurements to evaluate intrusion of subsurface VOC vapors into buildings. J Air Waste Manage Assoc 51(9):1318–1331

    Google Scholar 

  • Hers I, Zapf-Gilje R, Evans D, Li L (2002) Comparison, validation, and use of models for predicting indoor air quality from soil and groundwater contamination. Soil Sed Contam 11(4):491–527

    Article  Google Scholar 

  • Israel Central Bureau of Statistics (2006) 5/1/2006, http:\\www.cbs.gov.il. Cited 5 January 2006

  • IWA (2004) Development and use of water resources in Israel until Fall 2003. IWA, London

  • Lerner DN, Gosk E, Bourg ACM, Bishop PK, Burston MW, Mouvet C, Degranges P, Jakobsen R (1993) Postscript: summary of the Coventry groundwater investigation and implications for the future. J Hydrol 149(1–4):257–272

    Article  Google Scholar 

  • Mercado A, Evron M, Kanovitch I (1975) Groundwater salinity of the Coastal Plain-chloride inventory and assessment of future salinity trends. Tahal Report # 01/75/22, 68 pp (in Hebrew)

  • Nazari MM, Burston MW, Bishop PK, Lerner DN (1993) Urban groundwater pollution: a case-study from Coventry, United-Kingdom. Ground Water 31(3):417–424

    Article  Google Scholar 

  • Pankow JF, Cherry JA (1996) Dense chlorinated solvents and other DNAPLs in groundwater. Waterloo, Rockwood, ON, Canada, 522 pp

    Google Scholar 

  • Rappel I, Hen I, Burla E, Goldberger S (2000) Presence of organic micropollutants in drinking water wells. Dept of Environmental Health, Ministry of Health, Tel Aviv, 114 pp (in Hebrew)

  • Rivett MO, Lerner DN, Lloyd JW (1990a) Chlorinated Solvents In UK Aquifers. J Institut Water Environ Manage 4(3):242–250

    Article  Google Scholar 

  • Rivett MO, Lerner DN, Lloyd JW (1990b) Temporal variations of chlorinated solvents in abstraction wells. Ground Water Monitor Remed 10(4):127–133

    Article  Google Scholar 

  • Rivett MO, Lerner DN, Lloyd JW, Clark L (1990c) Organic contamination of the Birmingham aquifer, UK. J Hydrol 113(1–4):307–323

    Article  Google Scholar 

  • Rivett MO, Shepherd KA, Keeys LL, Brennan AE (2005) Chlorinated solvents in the Birmingham aquifer, UK: 1986–2001. Q J Eng Geol Hydrogeol 38:337–350

    Article  Google Scholar 

  • Ronen D, Kanfi Y (1981) Frequent variations in the chemical quality of groundwater: a monitoring problem. Sci Total Environ 21:273–278

    Article  Google Scholar 

  • Ronen D, Laor Y, Graber ER (2005) Volatile organic compounds in the saturated-unsaturated interface region (SUIR) of a phreatic contaminated aquifer. Vadose Zone J 4(2):337–344

    Article  Google Scholar 

  • Ronen D, Graber ER, Mingelgrin U, Gerstl Z, Dahan O, Weisbrod N (2007) Evaluating extent of aquifer contamination in Tel Aviv. Israel Water Commission, Tel Aviv

  • USEPA (2002) Draft guidance for evaluating the vapor intrusion to indoor air pathway from groundwater and soils. USEPA, Office of Solid Waste and Emergency Response, Washington, DC. www.epa.gov/correctiveaction/eis/vapor/complete.pdf. Cited 20 November 2007

  • Wycisk P, Weiss H, Kaschl A, Heidrich S, Sommerwerk K (2003) Groundwater pollution and remediation options for multi-source contaminated aquifers (Bitterfeld/Wolfen, Germany). Toxicol Lett 140:343–351

    Article  Google Scholar 

Download references

Acknowledgements

This study was financed mainly by the Israel Water Authority and in part by the Agricultural Research Organization. The conclusions presented represent those of the authors of this study. We would like to thank the reviewers and Associate Editor for their comprehensive and helpful comments on this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. R. Graber.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Graber, E.R., Laor, Y. & Ronen, D. Aquifer contamination by chlorinated-VOCs: the case of an urban metropolis megasite overlying the Coastal Plain aquifer in Israel. Hydrogeol J 16, 1615–1623 (2008). https://doi.org/10.1007/s10040-008-0366-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10040-008-0366-2

Keywords

Navigation