Skip to main content
Log in

Measured river leakages using conventional streamflow techniques: the case of Souhegan River, New Hampshire, USA

Drainances d’une rivière mesurées au moyen de techniques conventionnelles de jaugeage: cas de la rivière Souhegan au New Hampshire (USA)

Filtraciones medidas de ríos usando técnicas convencionales: el caso del Río Souhegan, New Hampshire, USA

用传统的流量测定方法测量河流的渗漏量 : 以美国新罕布什尔州的Souhegan河为例

Medições de perdas de água do rio usando técnicas convencionais de escoamento superficial: o caso do Rio Souhegan, New Hampshire, EUA

  • Report
  • Published:
Hydrogeology Journal Aims and scope Submit manuscript

Abstract

Multiple streamflow measurements were made at coupled discharge measurement stations to quantify rates of aquifer recharge and discharge on two reaches of the Souhegan River, New Hampshire, USA, flowing within a glacial-drift river-valley aquifer. The reaches included a predominantly losing (aquifer recharge) reach and a variable (aquifer recharge and discharge) reach located downstream of the former reach. River leakage, the differential between coupled upstream and downstream streamflow measurements along a reach, varied by almost 30 cubic feet per second (ft3/s) (0.85 m3/s) along the two reaches. The upper reach averaged 3.94 ft3/s (0.11 m3/s) loss whereas the lower reach averaged 4.85 ft3/s (0.14 m3/s) gain. At the upper reach, 13 losses were measured out of 19 coupled measurements. At the lower reach, ten out of 13 coupled measurements indicated gains in flow and suggest that this reach is primarily a gaining river reach. An important factor in river leakage appears to be antecedent trends in river stage. At the upper reach, gains were measured only during periods of declining river stage. Conversely, at the lower reach, streamflow loss was measured primarily during periods of rising river stage. Although some tendencies exist, several factors complicate the analysis of river leakage, most notably the inaccuracies in computed stream discharge.

Résumé

De nombreux jaugeages ont été réalisés sur des stations couplées de mesure de débit pour quantifier la recharge et la vidange de l’aquifère sur deux biefs de la rivière Souhegan au New Hampshire (USA), qui cours au sein d’un aquifère de vallée d’apports glaciaires. L’un des biefs étudié est majoritairement infiltrant (recharge de l’aquifère) et l’autre variable (à la fois recharge et vidange de l’aquifère), situé à l’aval du précédent. La drainance de la rivière, le différentiel entre des jaugeages couplés à l’aval et à l’amont le long d’un bief, varie de près de 0.85 m3/s le long des deux biefs. Le bief haut montre des pertes en moyenne de 0.11 m3/s alors que le bas montre un gain moyen de 0.14 m3/s. Sur le bief haut, 13 pertes ont été repérées sur les 19 jaugeages couplés réalisés. Sur le bas, 10 des 13 jaugeages réalisés montrent une augmentation du débit et suggèrent que ce bief est principalement de type drainant. La tendance antérieure des variations des hauteurs d’eau de la rivière ressort comme un facteur important dans le phénomène de drainance. Sur le bief haut, les augmentations du débit n’ont été mesurés que pendant des périodes où la hauteur d’eau diminue. Inversement, sur le bief bas, les pertes de débit ont été mesurées essentiellement pour les périodes où les hauteurs d’eau montent. Bien que des tendances existent, plusieurs facteurs compliquent l’analyse de la drainace de la rivière, notamment les inexactitudes dans le calcul des débits du cours d’eau.

Resumen

Con el objeto de cuantificar la recarga y descarga de los acuíferos, se efectuaron múltiples mediciones del flujo en cursos de agua en estaciones de descarga acopladas en dos tramos del Río Souhegan, New Hampshire, USA, que fluye en un valle en un acuífero de origen glaciar. Los tramos incluyen un sector predominante de pérdida (recarga al acuífero) y un sector variable (recarga y descarga del acuífero) ubicado aguas abajo del sector recién mencionado. Las filtraciones del río, esto es la diferencia entre las mediciones aguas arriba y aguas abajo, variaron en casi 30 pies cúbicos por segundo (ft3/s) (0.85 m3/s) a lo largo de los dos sectores. El sector superior promedió pérdidas de 3.94 ft3/s (0.11 m3/s), mientras que el sector inferior tuvo ganancias promedio de 4.85 ft3/s (0.14 m3/s). En el tramo superior, se registraron pérdidas en 13 de los 19 sitios acoplados de mediciones. En el tramo inferior, 10 de 13 mediciones acopladas indican ganancias en el flujo y sugieren que se trata de un tramo de ganancia del río. Un factor importante de las filtraciones del río parece ser la tendencia antecedente de los niveles de agua en el río. En el tramo superior, las ganancias se midieron durante los períodos de niveles de agua decrecientes. Contrariamente, en el tramo inferior las pérdidas de agua del río se midieron principalmente en los períodos ascendentes de los niveles de agua. Aunque pueden distinguirse algunas tendencias, hay varios factores que complican el análisis de las filtraciones del río, muy particularmente las imprecisiones en el cómputo de las descargas del curso de agua.

摘要

对于发源于冰河谷含水层的美国新罕布什尔州的Souhegan河, 在有相互关联的流量测量站, 流量测量法被用来测定该河两岸河段内含水层的补给和排泄速率。研究河段包括一个重要的失水 (含水层接受补给) 河段和一个位于下游的可变河段 (含水层既受补给也排泄) .在两个河段内, 河流的渗漏量在上游和下游河段的流量差别可以达到30 ft3/s (0.85 m3/s)。上游河段平均有3.94 ft3/s (0.11 m3/s)的损失量, 而下游河段则有平均4.85 ft3/s (0.14 m3/s)的补给量。在上游河段, 用19种相关测量法测定了13个损失量 ; 而在下游河段, 13种相关测量法测定的10个损失量则指出流动过程中流量增加, 并且提出这个河段主要还是一个接受补给的河流区域。河流渗漏的一个重要影响因素是河流水位的变化。在上游河段, 仅仅在河流水位衰退阶段测到流量的增加。相反, 在下游河段, 流量损失主要在河流水位上升阶段测到。虽然存在一些趋势, 但多个因素使河流的渗漏分析复杂化了, 表现为计算得到的河流排泄量偏差.

Resumo

Foram efectuadas múltiplas medições de caudal em estações hidrométricas duplas, para quantificar taxas de recarga e descarga do aquífero em dois troços do Rio Souhegan, New Hampshire, EUA, o qual corre na área de um aquífero de vale glaciar composto por depósitos glaciares. Os troços incluem um troço predominantemente influente (recarga do aquífero) e um troço variável (recarga e descarga do aquífero) localizado a jusante do primeiro. As perdas de água do rio, correspondentes ao diferencial entre as medições de caudal nas duas estações, a montante e a jusante, ao longo de um troço, variaram quase 0.85 m3/s nos dois troços. O troço superior teve perdas médias de 0.11 m3/s, enquanto o troço inferior ganhou em média 0.14 m3/s. No troço superior mediram-se 13 perdas em 19 medições duplas. No troço inferior, 10 em 13 medições duplas indicaram ganhos de volume escoado e sugerem que este troço do rio é principalmente efluente. As tendências prévias do nível do rio parecem ser um factor relevante para as perdas de água. No troço superior, os ganhos foram medidos apenas durante períodos de nível do rio descendente. Contrariamente, no troço inferior, as perdas de caudal foram medidas principalmente durante períodos de nível ascendente. Apesar de existirem algumas tendências, diversos factores complicam a análise das perdas de água do rio, dos quais se destacam as imprecisões nos caudais calculados.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Atkins JB, Journey CA, Clarke JS (1996) Estimation of ground-water discharge to streams in the central Savannah River Basin of Georgia and South Carolina. US Geol Surv Water-Resour Invest Report 96–4179:35

    Google Scholar 

  • Barlow PM, Moench AF (1998) Analytical solutions and computer programs for hydraulic interaction of stream-aquifer systems. US Geological Survey Open-File Report 98–415A:85

    Google Scholar 

  • Batelaan O, De Smedt F, Triest L (2003) Regional groundwater discharge: phreatophyte mapping, groundwater modelling and impact analysis of land-use change. J Hydrol 275:86–108

    Article  Google Scholar 

  • Brayton MJ (2001) Combined use of streambed piezometers and water temperature measurements to characterize gaining and losing stream reaches. Unpublished Masters Research paper, University of New Hampshire, variously paginated

  • Brayton MJ, Harte PT (2001) Results of a monitoring program of continuous water levels, specific conductance, and water temperature at the OK Tool facility of the Savage Municipal Well Superfund site, Milford, New Hampshire. US Geological Survey Open-File Report 01–338:50

    Google Scholar 

  • Callegary JB, Leenhouts JM, Paretti NV, Jones CA (2007) Rapid estimation of recharge potential in ephemeral stream channels using electromagnetic methods, and measurements of channel and vegetation characteristics. J Hydrol 344:17–31

    Article  Google Scholar 

  • Chen XH, Shu L (2006) Groundwater evapotranspiration captured by seasonally pumping wells in river valleys. J Hydrol 318:334–347

    Article  Google Scholar 

  • Constantz JE, Stewart AE, Niswonger RG (1999) The influence if water temperature on stream/groundwater exchanges: paper presented at Geological Society of America, 1999 annual meeting, Denver, CO

  • Dumouchelle DH (2001) Evaluation of ground-water/surface-water relations, Chapman Creek, West-Central Ohio by means of multiple methods. US Geol Surv Water-Resour Invest Report 01–4202:18

    Google Scholar 

  • Dunne T, Leopold LB (1978) Water in environmental planning. W.H. Freeman and Co, New York, p 818

    Google Scholar 

  • Dysart JE, Rheaume SJ, Kontis AL (1999) Induced infiltration from the Rockaway River and water chemistry in a stratified-drift aquifer at Dover, New Jersey, with a section on modeling groundwater flow in the Rockaway River Valley. US Geol Surv Water-Resour Invest Report 96–4068:112

    Google Scholar 

  • Fryar AE, Wallin EJ, Brown DL (2000) Spatial and temporal variability in seepage between a contaminated aquifer and tributaries to the Ohio River. Ground Water Monit Remediat 2–03:129–146

    Article  Google Scholar 

  • Harte PT, Mack TJ (1992) Geohydrology of, and Simulation of Groundwater Flow in the Milford-Souhegan Glacial-Drift Aquifer, Milford, New Hampshire. US Geological Survey Water Resources Investigations Report 91–4177:90

    Google Scholar 

  • Harte PT, Flynn RJ, Kiah RG, Severance T, Coakley MF (1997) Information on hydrologic and physical properties of water to assess transient hydrology of the Milford-Souhegan Glacial-Drift aquifer, Milford, New Hampshire. US Geol Surv Open-File Report 97–414:96

    Google Scholar 

  • Harte PT, Flynn RJ, Mack TJ (1999) Construction and calibration of numerical groundwater flow models of the Milford-Souhegan Glacial Drift aquifer, Milford, New Hampshire. US Geol Surv Open-File Report 99–462:76

    Google Scholar 

  • HMM Associates Inc (1991) Remedial investigation, Savage well site, Milford, New Hampshire. Concord, Mass., no. 2176 HAZ/4814:800

  • Kontis AL, Randall AD, Mazzaferro DL (2004) Regional hydrology and simulation of flow of stratified-drift aquifers in the glaciated northeastern United States. US Geol Surv Water-Supp Paper 1415-C:156

    Google Scholar 

  • Lee KK, Risely JC (2002) Estimates of ground-water recharge, baseflow, and stream reach gains and losses in the Willamette River Basin, Oregon. US Geol Surv Water-Resour Invest Report 01–4215:53

    Google Scholar 

  • Meyboom P (1964) Three observations on streamflow depletion by phreatophytes. J Hydrol 2:248–261

    Article  Google Scholar 

  • Rantz SE (1982a) Measurement and computation of streamflow-methods of measurement. US Geological Survey Water-Supply Paper 2175–1:1–284

    Google Scholar 

  • Rantz SE (1982b) Measurement and computation of streamflow-computation of discharge. US Geol Surv Water-Supp Paper 2175–2:285–631

    Google Scholar 

  • Rosenberry DO, Winter TC (1997) Dynamics of water-table fluctuations in an upland between two prairie-pothole wetlands in North Dakota. J Hydrol 191:266–289

    Article  Google Scholar 

  • Rushton KR, Tomlinson LM (1979) Possible mechanisms for leakage between aquifers and rivers. J Hydrol 40:49–65

    Article  Google Scholar 

  • Rutledge AT (1993) Computer programs for describing the recession of groundwater discharge and for estimating mean groundwater recharge and discharge from streamflow records. US Geol Surv Water-Resour Invest Report 93–412:45

    Google Scholar 

  • Sauer VB, Meyer RW (1992) Determination of error in individual discharge measurements. US Geol Surv Open-file Report 92–144:21

    Google Scholar 

  • Simonds FW, Sinclair KA (2002) Surface water–ground water interactions along the lower Dungeness River and vertical hydraulic conductivity of streambed sediments, Clallam County, Washington, September 1999- July 2001. US Geol Surv Water-Resour Invest Report 02–4161:60

    Google Scholar 

  • Stevens HH, Ficke JF, Smoot GF (1975) Water temperature-influential factors, field measurement, and data presentation. US Geol Surv Tech Water- Resour Invest D1–1:1–65

    Google Scholar 

  • Thornthwaite CW (1948) An approach toward a rational classification of climate. Geogr Rev 38:55–94

    Article  Google Scholar 

  • US Geological Survey (2007) Techniques of Water-Resources Investigations (TWRI). USGS TWRI Book 3, Chapter A1 through A19 and Book 8, Chapters A2 and B2 accessed online at http://pubs.usgs.gov/twri/, accessed 2007

  • Wilcoxon F (1945) Individual comparisons by ranking methods. Biometrics 1:80–83

    Article  Google Scholar 

  • Williams-Sether T (2004) River gain and loss studies for the Red River of the North Basin, North Dakota and Minnesota. US Geol Surv Open-File Report 2004–1076:21

    Google Scholar 

  • Winter TC, Harvey JW, Franke OL, Alley WM (1998) Ground water and surface water a single resource. US Geol Surv Circ 1139:79

    Google Scholar 

Download references

Acknowledgments

The authors wish to express thanks to Richard Goehlert and Richard Willey of the U.S. Environmental Protection Agency, Region 1, Thomas Andrews, and Robin Mongeon of the New Hampshire Department of Environmental Services for their general support during field operations. Thanks are also extended to Kenneth Toppin and Michael Norris, U.S. Geological Survey, for providing important review comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philip T. Harte.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Harte, P.T., Kiah, R.G. Measured river leakages using conventional streamflow techniques: the case of Souhegan River, New Hampshire, USA. Hydrogeol J 17, 409–424 (2009). https://doi.org/10.1007/s10040-008-0359-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10040-008-0359-1

Keywords

Navigation