Skip to main content
Log in

Two-dimensional modelling of contaminant transport through saturated porous media using the radial point interpolation method (RPIM)

Modélisation bidimensionnelle des transports de contaminants à travers une matrice saturée par la Méthode d'Interpolation de Point Radial (RPIM)

Modelación bidimensional del transporte de contaminantes en medios porosos saturados utilizando el método de interpolación radial puntual (MIRP)

Modelação 2D do transporte de um contaminante num meio poroso saturado utilizando o Método de Interpolação Pontual Radial (MIPR)

  • Paper
  • Published:
Hydrogeology Journal Aims and scope Submit manuscript

Abstract

A new numerical tool is presented which models the two-dimensional contaminant transport through saturated porous media using a meshfree method called the radial point interpolation method (RPIM) with polynomial reproduction. In RPIM, an approximate solution is constructed entirely in terms of a set of nodes and no characterisation of the interrelationship of the nodes is needed. An advection-dispersion equation with sorption is considered to illustrate the applicability of the RPIM. The Galerkin weak form of the governing equation is formulated using two-dimensional meshfree shape functions constructed using thin plate spline radial basis functions. A computer program is developed for the implementation of the RPIM procedure. Three numerical examples are presented and the results are compared with those obtained from the analytical solution and finite element method. The experimental results are also used to validate the approach. The proposed RPIM has generated results with no oscillations and they are insensitive to Peclet constraints.

Résumé

Un nouvel outil numérique est présenté pour modéliser les transports bidimensionnels de contaminants à travers une matrice poreuse saturée, en utilisant une méthode sans maillage appelée Méthode d'Interpolation de Point Radial (RPIM) avec reproduction polynomiale. Dans la RPIM, une solution approchée est intégralement constituée d'un ensemble de noeuds, et ne nécessite aucune détermination des relations internodales. Afin d'illustrer l'applicabilité de la RPIM, une équation d'advection-dispersion avec sorption a été étudiée. La forme faible de type Galerkin de l'équation directrice est formulée en utilisant des fonctions bidimensionnelles sans maille, construites en utilisant des fonctions spline plaque mince de base radiale. Un programme informatique est développé pour mettre en oeuvre la procédure RPIM. Trois exemples numériques sont présentés, et leurs résultats sont comparés à ceux obtenus par les solutions analytiques et par la méthode des éléments finis. Les résultats expérimentaux sont également utilisés pour valider l'approche. La RPIM proposée génère des résultats sans oscillations, qui sont insensibles aux contraintes de Peclet.

Resumen

Se presenta una nueva herramienta numérica que modela el transporte bidimensional de contaminantes en medios porosos saturados utilizando el método sin malla llamado Interpolación Radial Puntual (MIRP) con reproducción polinomial. En el MIRP se elabora una solución aproximada exclusivamente en función del grupo de nodos, y no se necesita una caracterización de la relación entre nodos. A fin de ilustrar la aplicabilidad del MIRP, se considera una ecuación de advección-dispersión con sorción. La forma débil de Galerkin para la ecuación dominante se formula con funciones de forma bidimensionales sin malla usando funciones básicas radiales del tipo de placa delgada spline. Se desarrolla un programa computacional para la implementación del procedimiento MIRP. Se presentan tres ejemplos numéricos y sus resultados se comparan con aquellos obtenidos con la solución analítica y con el método de los elementos finitos. Los resultados experimentales también se utilizan para validar la aproximación. La propuesta MIRP genera resultados estables y no es sensible a las restricciones impuestas por el número de Peclet.

Resumo

É apresentada uma ferramenta numérica que permite modelar bidimensionalmente o transporte de um contaminante através de um meio poroso saturado utilizando o Método de Interpolação Pontual Radial (MIPR) com reprodução polinomial. No MIPR é determinada uma solução aproximada em todos os nós em que é discretizado o espaço, não sendo necessário conhecer a caracterização das relações entre os nós. Para ilustrar a aplicabilidade deste método é utilizada uma equação de transporte em que é válido um processo advectivo-dispersivo com sorpção. A formulação do tipo Galerkin das equações fundamentais utiliza funções 2D construídas a partir de funções do tipo spline achatadas. Para a implementação do processo MIPR foi desenvolvido um programa computacional. São apresentados três exemplos numéricos e os resultados comparados com os obtidos por um método analítico e por outro numérico. Os resultados experimentais são também utilizados para validar a abordagem. Os resultados gerados pelo MIPR não apresentam oscilações sendo insensíveis às restrições Peclet.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Atluri SN, Zhu T (1998) A new meshless local Petrov-Galerkin (MLPG) approach in computational mechanics. Comput Mech 22:117–127

    Article  Google Scholar 

  • Bear J (1979) Hydraulics of groundwater. McGraw-Hill, New York

    Google Scholar 

  • Belytschko T, Lu YY, Gu L (1994) Element-free Galerkin methods. Int J Num Meth Eng 37:229–256

    Article  Google Scholar 

  • Binning P, Celia MA (1996) A finite volume Eulerian-Lagrangian localized adjoint method for solution of the contaminant transport equations in two-dimensional multiphase flow systems. Water Resour Res 32:103–114

    Article  Google Scholar 

  • Boztosun I, Charafi A (2002) An analysis of the linear advection-diffusion equation using mesh-free and mesh-dependent methods. Eng Anal Bound Elem 26:889–895

    Article  Google Scholar 

  • Dai KY, Liu GR, Lim KM, Han X, Du SY (2004) A meshfree radial point interpolation method for analysis of functionally graded material (FGM) plates. Comput Mech 34:213–223

    Article  Google Scholar 

  • Davidson JM, Baker DR, Brusewitz GH (1975) Simultaneous transport of water and absorbed solutes through soil under transient flow conditions. Trans Am Sot Agr Eng 18:535–539

    Google Scholar 

  • Domenico P (1987) An analytical model for multidimensional transport of a decaying contaminant species. J Hydrol 91:49–58

    Article  Google Scholar 

  • Donea J, Huerta A (2003) Finite element methods for flow problems. Wiley, New York

    Google Scholar 

  • Eldho TI, Rao BV (1997) Simulation of two-dimensional contaminant transport with dual reciprocity boundary elements. Eng Anal Bound Elem 20:213–228

    Article  Google Scholar 

  • Frind EO (1988) Solution of the advection-dispersion equation with free exit boundary. Num Meth Partial Diff Eqns 4:301–313

    Article  Google Scholar 

  • GeoSlope International Ltd. (2007) Transport modelling with CTRAN/W 2007: an engineering methodology. Student version 7.02, 2nd edn., GeoSlope, Alberta, Canada

  • Golberg MA, Chen CS, Bowman H (1999) Some recent results and proposals for the use of radial basis functions in the BEM. Eng Anal Bound Elem 23:285–296

    Article  Google Scholar 

  • Li J, Chen Y, Pepper D (2003) Radial basis function method for 1-D and 2-D groundwater contaminant transport modelling. Comput Mech 32:10–15

    Article  Google Scholar 

  • Liu WK, Jun S, Zhang YF (1995) Reproducing kernel particle methods. Int J Num Meth Eng 20:1081–1106

    Google Scholar 

  • Liu GR, Zhang GY, Gu YT, Wang YY (2005) A meshfree radial point interpolation method (RPIM) for three-dimensional solids. Comput Mech 36:421–430

    Article  Google Scholar 

  • McKinley JD (1999) Solving the advection-dispersion equation using the discrete puff particle method. Comp Geotech 24:29–39

    Article  Google Scholar 

  • Monaghan JJ (1992) Smoothed particle hydrodynamics. Ann Rev Astron Astrophys 30:543–574

    Article  Google Scholar 

  • Ogata A, Banks RB (1961) A solution of the differential equation of longitudinal dispersion in porous media. US Geol Surv Prof Pap 411-A

  • Rowe RK, Booker JR (1985) 1-D pollutant migration in soils of finite depth. J Geotech Eng ASCE 111:479–499

    Article  Google Scholar 

  • Sheu WHT, Chen YH (2002) Finite element analysis of contaminant transport in groundwater. Appl Math Comput 127:23–43

    Article  Google Scholar 

  • Sukumar N, Moran B, Semenov AY, Belikov VV (2001) Natural neighbour Galerkin methods. Int J Num Meth Eng 50:1–27

    Article  Google Scholar 

  • Sykes JK, Pahwa SB, Lantz RB, Ward DS (1982) Numerical simulation of flow and contaminant migration at an extensively monitored landfill. Water Resour Res 18:1687–1704

    Article  Google Scholar 

  • van Genuchten MTh (1981) Analytical solutions for chemical transport with simultaneous adsorption, zero-order production and first-order decay. J Hydrol 49:213–233

    Article  Google Scholar 

  • Wang JG, Liu GR (2002) On the optimal shape parameters of radial basis functions used for 2-D meshless methods. Comp Meth Appl Mech Eng 191:2611–2630

    Article  Google Scholar 

  • Wang JG, Liu GR, Lin P (2002) Numerical analysis of Biot’s consolidation process by radial point interpolation method. Int J Solids Struct 39:1557–1573

    Article  Google Scholar 

  • Zairi M, Rouis MJ (2000) Numerical and experimental simulation of pollutants migration in porous media. Bull Eng Geol Env 59:231–238

    Article  Google Scholar 

  • Zheng C, Bennett GD (2002) Applied contaminant transport modelling. Wiley, New York

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank the anonymous reviewers for their careful and insightful review of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. R. Dodagoudar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Praveen Kumar, R., Dodagoudar, G.R. Two-dimensional modelling of contaminant transport through saturated porous media using the radial point interpolation method (RPIM). Hydrogeol J 16, 1497–1505 (2008). https://doi.org/10.1007/s10040-008-0325-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10040-008-0325-y

Keywords

Navigation