Skip to main content

Advertisement

Log in

Groundwater risk intensity mapping in semi-arid regions using optical remote sensing data as an additional tool

  • Paper
  • Published:
Hydrogeology Journal Aims and scope Submit manuscript

Abstract

Due to semi-arid to arid climatic conditions, Jordan has limited groundwater resources. As a result of agricultural activities and untreated wastewater, most of the groundwater in the karstic areas is microbiologically contaminated. Groundwater vulnerability, hazards, and risk intensity were mapped (scale 1:50,000) at a test site near the Jordan Rift Valley. The mapping included the use of optical remote sensing to complement conventional data in areas with poor data. LANDSAT ETM+ data, and colour and panchromatic aerial photographs at different scales were incorporated using visual image interpretation and digital image processing. The applicability of the different remote sensing data sources is discussed and recommendations for their usage are given. Information derived from digital images offers new opportunities for vulnerability and hazard assessment, particularly when related to land use, vegetation cover, urbanisation and infrastructure. The resulting maps indicate clearly the vulnerable areas and the “hot spots” of potential contamination in the test site and form an important basis for integrated groundwater management studies and the long-term planning of protective measures. The application and transferability of the European vulnerability approach (COST Action 620) to the test site in Jordan proved to be good, in general, although modifications were necessary to suit local conditions.

Résumé

La Jordanie ne dispose que de ressources limitées en eaux souterraines, étant donné le climat semi-aride à aride prévalant dans ce pays. La contamination microbiologique de la plupart des eaux souterraines des régions karstiques est due aux activités agricoles et l’absence de traitement des eaux usées. La vulnérabilité des eaux souterraines, et le danger et l’intensité du risque de leur contamination ont été cartographiés (à l’échelle de 1:50 000) pour un site d’étude situé près de la vallée du Rift du Jourdain. La cartographie inclut l’utilisation de données optiques de télédétection pour complémenter les sources de données conventionnelles, dans les zones où la couverture est déficiente. Des données de LANDSAT ETM+ et des photographies aériennes en couleur et panchromatiques à différentes échelles ont été incorporées en utilisant des méthodes d’interprétation visuelle et informatique de l’image. La qualité des différentes sources de données de télédétection est discutée et évaluée, et des recommandations pour leur utilisation sont suggérées. L’informations obtenue des images digitales offre de nouvelles opportunités pour l’évaluation des vulnérabilités et des dangers, surtout reliés à l’usage du sol, la couverture végétale, l’urbanisation et les diverses infrastructures. Les cartes ainsi obtenues indiquent clairement les zones vulnérables et les points critiques potentiels pour la contamination du site d’étude et forment une base importante pour l’étude de la gestion intégrée des eaux souterraines et pour la planification à long terme des mesures de protection. L’applicabilité de l’approche européenne de cartographie de la vulnérabilité et des risques (COST action 620) au site d’étude jordanien est généralement approprié, même si certaines modifications ont été nécessaires pour s’ajuster aux particularités régionales.

Resumen

Los recursos hídricos subterráneos en Jordania son limitados debido principalmente a su clima semi árido. En la mayoría de las áreas kársticas, las aguas subterráneas están contaminadas microbiológicamente a consecuencia de la actividad agrícola y de las aguas residuales. Por ello, se han realizado mapas de peligro, vulnerabilidad e intensidad del riesgo (a escala 1/50.000) de un área piloto próxima al Rift en Jordania. Los mapas han sido elaborados con el apoyo de técnicas de teledetección en aquellas zonas donde la información era escasa. Se han utilizado imágenes del LANDSAT ETM+ a y fotografía aérea, de color y pancromática, a diferentes escalas para el procesamiento de las imágenes digitales y la fotointerpretación. En este trabajo se discute y se dan recomendaciones sobre la aplicabilidad de las diferentes imágenes de satélite en los análisis de teledetección. Los datos que se pueden derivar de las imágenes digitales son un avance para la evaluación de la vulnerabilidad y los peligros de contaminación, particularmente aquellos referidos a usos del suelos, cubierta vegetal e infraestructuras urbanas. Los mapas resultantes muestran claramente la vulnerabilidad y los peligros potenciales de contaminación en la zona de estudio, lo que genera una importante base para los estudios de gestión integrada de las aguas subterráneas y de planificación de las medidas protectoras. La aplicabilidad de la aproximación europea a los estudios de vulnerabilidad en karst (COST Action 620) en la zona de estudio (Jordania) es buena, aunque fueron necesarias algunas leves modificaciones de la metodología para ajustarla a las condiciones locales.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Al-Adamat RAN, Foster IDL, Baban SMJ (2003) Groundwater vulnerability and risk mapping for the Basaltic aquifer of the Azraq basin of Jordan using GIS, remote sensing and DRASTIC. Appl Geogr 23(4):303–324

    Article  Google Scholar 

  • Al-Farajat M (2001) Hydrogeo-eco-systems in Aqaba/Jordan coasts and region: natural settings, impacts of land use, spatial vulnerability to pollution and sustainable management. Forschsergeb Bereich Hydrogeol Umwelt 30:220

    Google Scholar 

  • Al-Kharabsheh-Atef A (1999) Influence of long-term overpumping on groundwater quality at Dhuleil Basin, Jordan. Forschsergeb Bereich Hydrogeol Umwelt 18:2.1–2.10

    Google Scholar 

  • Aller L, Bennet T, Lehr JH, Petty RJ (1987) DRASTIC: a standardised system for evaluating groundwater pollution potential using hydrologic settings. EPA/600/2-85/0108, USEPA, Robert S. Kerr Environmental Research Laboratory, Ada, OK, 163 pp

  • Basnyat P, Teeter LD, Lockaby BG, Flynn KM (2000) The use of remote sensing and GIS in watershed level analyses of non-point source pollution problems. For Ecol Manage 128(1):65–73

    Article  Google Scholar 

  • Bender F (1974) Geology of Jordan. Borntraeger, Berlin, 196 pp

    Google Scholar 

  • Bressan MA, Dos Anjos CE (2003) Techniques of remote sensing applied to the environmental analysis of part of an aquifer located in the Sao Jose dos Campos Region sp, Brazil. Environ Monit Assess 84(1–2):99–109

    Article  Google Scholar 

  • Bukata RP, Jerome JH, Kondratyev KY, Pozdnyakov DV (1991) Estimation of organic and inorganic matter in inland waters: optical cross sections of Lakes Ontario and Ladoga. J Great Lakes Res 17:461–469

    Article  Google Scholar 

  • Chebaane M, El-Naser H, Fitch J, Hijazi A, Jabbarin A (2004) Participatory groundwater management in Jordan: development and analysis of options. Hydrogeol J 12(1):14–32

    Article  Google Scholar 

  • Chowdary VM, Yatindranath Kar S, Adiga S (2004) Modeling of non-point source pollution in a watershed using remote sensing and GIS. Photonirvachak 32(1):59–73

    Google Scholar 

  • Civita M, De Maio M (2000) Valutazione e cartografia automatica della vulnerabilità degli acquiferi all’inquinamento con il systema parametrico SINTACS R5. Bologna (Pitagora Editrice), 248 pp

  • Davenport IJ, Silgram M, Robinson JS, Lamb A, Settle JJ, Willig A (2003) The use of earth observation techniques to improve catchment-scale pollution predictions. Phys Chem Earth 28:1365–1376

    Google Scholar 

  • Daly D, Dassargues A, Drew D, Dunne S, Goldscheider N, Neale S, Popescu IC, Zwahlen F (2002) Main concepts of the European approach for (karst) groundwater vulnerability assessment and mapping. Hydrogeol J 10(2):340–345

    Article  Google Scholar 

  • Dekker AG, Malthus TJ, Hoogenboom HJ (1995) The remote sensing of inland water quality. In: Danson FM, Plummer SE (eds) Advances in remote sensing. Wiley, Chichester, pp 123–142

    Google Scholar 

  • De Ketelaere D, Hötzl H, Neukum C, Civita M, Sappa G (2004) Hazard Analysis and Mapping. In: Zwahlen F (ed) COST Action 620: vulnerability and risk mapping for the protection of carbonate (karst) aquifers. Final Report, Office of the Official Publications of the European Communities, Brussels, Belgium, 297 pp

  • Deutsches Institut für Normung e.V. (1987) DIN 4022, Baugrund und Grundwasser, Benennen und Beschreiben von Boden und Fels, Beuth, Berlin, 28 pp

  • Doerflinger N, Zwahlen F (1998) Practical guide: groundwater vulnerability mapping in karstic regions (EPIK). Swiss Agency for the Environment, Forests and Landscape (SAEFL), Bern, Switzerland, 56 pp

  • Dottridge J, Jaber-Abu-Nizar (1999) Groundwater resources and quality in northeastern Jordan: safe yield and sustainability. Appl Geogr 19(4):313–323

    Article  Google Scholar 

  • D’Sa EJ, Zaitzeff JB, Steward RG (2000) Monitoring water quality in Florida Bay with remotely sensed salinity and in situ bio-optical observations. Int J Remote Sens 21(4):811–816

    Article  Google Scholar 

  • Ellyett CD, Pratt DA (1975) A Review of the potential applications of remote sensing techniques to hydrogeological studies in Australia. Technical Paper No. 13, Australian Water Resources Council, Australian Governmental Publishing Service, Canberra, 147 pp

  • Engman ET, Gurney RJ (1991) Remote sensing in hydrology. Chapman and Hall, London, 250 pp

    Google Scholar 

  • Foster SSD (1987) Fundamental concepts in aquifer vulnerability, pollution risk and protection strategy. Vulnerability of soil and groundwater to pollutants ed. Proceedings and information committee for hydrological research, TNO committee on Hydrological Research, The Hague, pp 69–86

  • Farrell SO (1985) Evaluation of color infrared aerial surveys of wastewater soil absorption systems. EPA/600/2-85/039 (NTIS PB85-189074), USEPA, Washington, DC, 40 pp

  • Finkbeiner M, O’Tool MM (1985) Application of aerial photography in assessing environmental hazards and monitoring cleanup operations at hazardous waste sites. Paper presented at The 6th National Conference on Management of Uncontrolled Hazardous Waste Site. USEPA, Silver Spring, MD, November 1985

  • Gogu R, Dassargues A, (2001) Intrinsic vulnerability maps of a karstic aquifer as obtained by five different assessment techniques: comparison and comments. Proc. of the 7th Conference on Limestone Hydrology and Fissured Media, September 2001, Besançon, France, pp 161–166

  • Goldscheider N (2002) Hydrogeology and vulnerability of karst systems: examples from the Northern Alps and the Swabian Alb. PhD Thesis, University of Karlsruhe, Germany

  • Goldscheider N, Klute M, Sturm S, Hötzl H (2000) The PI method: a GIS based approach to mapping groundwater vulnerability with special considerations of karst aquifers. Z Angew Geol 46(3):250–261

    Google Scholar 

  • Härma P, Vepsäläinen J, Hannonen T, Pyhälahti T, Kämäri J, Kallio K, Eloheimo K, Koponen S (2001) Detection of water quality using simulated satellite data and semi-empirical algorithms in Finland. Sci Total Environ 268(1–3):107–122

    Article  Google Scholar 

  • Hölting B, Haertle T, Hohberger K-H, Nachtigall KH, Villinger E, Weinzierl W, Wrobel J-P (1995) Konzept zur Ermittlung der Schutzfunktion der Grundwasserüberdeckung [Concepts for the investigation of the protective function of the groundwater overlying layers]. Geol Jahrb C63:5–24

    Google Scholar 

  • Hötzl H, Delporte C, Liesch T, Malik P, Neukum C, Svasta J (2004) Risk mapping. In: Zwahlen F (ed) COST Action 620: vulnerability and risk mapping for the protection of carbonate (karst) aquifers. Final Report, Office of the Official Publications of the European Communities, Brussels, Belgium, 297 pp

  • Hudson SJ, Moore GF, Bale AJ, Dyer KR, Aiken J (1994) An operational approach to determining suspended sediment distributions in the Humber Estuary by airborne multi-spectral imagery. Proc Int Airborne Remote Sens Conf 3:10–20

    Google Scholar 

  • Kim K, Ventura S (1993) Large-scale modeling of urban non-point source pollution using a geographical information system. Photogramm Eng Remote Sens 59(10):1539–1544

    Google Scholar 

  • Koponena S, Pulliainena J, Kalliob K, Hallikainena M (2002) Lake water quality classification with airborne hyperspectral spectrometer and simulated MERIS data. Remote Sens Environ 79:51–59

    Article  Google Scholar 

  • Magiera P (2000) Methoden zur Abschätzung der Verschmutzungsempfindlichkeit des Grundwassers [Methods for estimating groundwater vulnerability]. Grundwasser 3:103–114

    Article  Google Scholar 

  • Magiera P (2002) GIS-gestützte Bewertung der Verschmutzungsempfindlichkeit des Grundwassers [GIS-based evaluation of the groundwater vulnerability]. Geologisches Jahrbuch Sonderheft, Reihe C, Heft SC 3, Schweizerbart, Stuttgart, Germany

    Google Scholar 

  • Margane A (2002) Criteria for the preparation of groundwater vulnerability maps. Technical Report Nr. 2, Technical Cooperation Project No.: 2001.2132.7. Ministry of Water and Irrigation MWI, Amman, Federal Institute for Geosciences and Natural Resources BGR, Hannover, Germany, 80 pp

  • Masri M (1963) Report on the geology of the Amman, Zerqa area. Central Water Authority, Amman, pp 1–74

  • Mattikalli MN, Engman ET (2000) Integration of remotely sensed data into geographical information systems. In: Schultz GA, Engman TE (ed) Remote sensing in hydrology and water management. Springer, Berlin, 475 pp

    Google Scholar 

  • Merchant JW (1994) GIS-based groundwater pollution hazard assessment: a critical review of the DRASTIC model. Photogramm Eng Remote Sens 60(9):1117–1127

    Google Scholar 

  • Mikbel SH, Zacher W (1981) The Wadi Shueib structure in Jordan. Neues Jahrb Geol Paläontol, Monatsh 9:571–576

    Google Scholar 

  • Ministry of Agriculture (1994) National soil map and land use project: the soils of Jordan vols 2–3, Level 2, semi-detailed studies. Hunting Technical Services Ltd. Houston, Texas

  • OKI (Ohio-Kentucky-Indiana Regional Council of Governments) (1975) A method for assessing rural non point sources and its application in water quality management. WH-554, OKI, Cincinnati, OH, USA, 20 pp

  • Orthofer R, Shuval H, Issac J, Daoud R, Kupferberger H (2001) Developing sustainable water management in the Jordan Valley Final Report, INCO-DC Contract no. ERBIC18CT970161, EU, Brussels, 64 pp

  • Powell JH (1989) Stratigraphy and sedimentation of the phanerozoic rocks in central and south Jordan: part B Kurnub, Ajlun and Belqa Groups. Ammam Geol Map Div Bull 11B:127

  • Quennel AM (1951) The geology and mineral resources of Transjordan. Colon Geol Miner Resour 2:85–115

    Google Scholar 

  • Ragan RM, Rogers RH (1978) Use of LANDSAT satellite remote sensing for regional environmental planning and management. XV Convention Pan American Federal of Engineering Societies, Santiago, Chile

  • Rosen L (1994) A study of DRASTIC methodology with emphasis on Swedish conditions. Groundwater 32(2):278–285

    Google Scholar 

  • Salameh E (1980) The Suweilih Structure. Neues Jahrb Geol Paläontol Monatsh 11:428–438

    Google Scholar 

  • Salameh E (1996) Water quality degradation in Jordan. Royal society for the conservation of nature. Deposit No. (1134/8/1996). Friedrich Ebert Stiftung, Bonn, Germany, 180 pp

  • Schecter RN (1976) Resources inventory using LANDSAT data for area wide water quality planning. Proc. Symp. on Machine Processing of Remotely Sensed Data, Laboratory of applications of remote sensing, Purdue University, West Lafayette, IN, USA

  • Schultz GA, Engman ET (2000) Remote sensing in hydrology and water management. Springer, Heidelberg, 483 pp

    Google Scholar 

  • Spiteri A (2004) Data collection using remote sensing. In: Zwahlen F (ed) (2004) COST Action 620: vulnerability and risk mapping for the protection of carbonate (karst) aquifers. Final Report, Office of the Official Publications of the European Communities, Brussels, Belgium, 297 pp

  • Srivastava A, Tripathi NK, Gokhale KV (1997) Mapping groundwater salinity using IRS-1B LISS II data and GIS techniques. Int J Remote Sens 18(13):2853–2862

    Article  Google Scholar 

  • Star J, Estes J (1990) Geographic information systems: an introduction. Englewood Cliffs, New Jersey, 250 pp

    Google Scholar 

  • Svoma J, Pysek A (1985) Photographic detection of groundwater pollution. In: Goodison BE (ed) Hydrological applications of remote sensing and remote sensing data transmission. Int Assoc Hydrol Sci Pub 145:561–567

    Google Scholar 

  • Ta’any RAA (1992) Hydrological and hydrochemical study of the major springs in the Wadi Shueib catchment area. McS Thesis, Yarmouk University, Irbid, Jordan, 300 pp

  • Thiemann S, Kaufmann H (2002) Lake water quality monitoring using hyperspectral airborne data: a semiempirical multisensor and multitemporal approach for the Mecklenburg Lake District, Germany. Remote Sens Environ 81:228–237

    Article  Google Scholar 

  • Vrba J, Zoporozec A (eds) (1994) Guidebook on mapping groundwater vulnerability. Int Contrib Hydrogeol (IAH) 16:131

  • Zwahlen F (ed) (2004) COST Action 620: vulnerability and risk mapping for the protection of carbonate (karst) aquifers. Final Report, Office of the Official Publications of the European Communities, Brussels, Belgium, 297 pp

Download references

Acknowledgements

The study was done within the framework of the multi-lateral project: Water Resources Evaluation for a Sustainable Development in the Jordan Rift Basin, German-Jordanian-Israeli-Palestinian Joint Research Program funded and supported by the German Ministry of Education and Research (BMBF 02WT0160) and the Israeli Ministry of Science (MOS). The authors would like to thank the BMBF, the MOS, and all project partners for the helpful discussions and their support during the years of scientific cooperation and friendship. The authors also wish to express their thanks to Prof. Elias Salameh of the University in Amman (Jordan) for his support throughout the field surveys and the research in Amman.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heike Werz.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(JPG 883 kb)

High resolution image file (TIF 20 mb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Werz, H., Hötzl, H. Groundwater risk intensity mapping in semi-arid regions using optical remote sensing data as an additional tool. Hydrogeol J 15, 1031–1049 (2007). https://doi.org/10.1007/s10040-007-0202-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10040-007-0202-0

Keywords

Navigation