Skip to main content
Log in

Copepod distribution as an indicator of epikarst system connectivity

  • Technical Note
  • Published:
Hydrogeology Journal Aims and scope Submit manuscript

Abstract

The distribution of 27 copepod species was determined in 35 drips in four Slovenian caves (Dimnice, Postojna Planina Cave System, Škocjanske Jame, Županova Jama), and of ten species from 13 drips in one US cave (Organ Cave, West Virginia). The dripping water comes from epikarst, the skin of karst. A significant fraction of the copepod species found (nine species in Slovenia and three in West Virginia) occurred over a maximum linear extent of 100 m. These and other localized distributions probably resulted from colonization of epikarst by an ancestral surface population in a single location, with subsequent lateral spread in the direction of epikarst flow. This suggests that the distribution of copepods could potentially be used to trace major flow paths in epikarst without the need for the injection of dyes or other tracers.

Résumé

La distribution de 27 espèces de copépodes a été déterminée dans 35 zones de percolation de quatre grottes slovènes (Dimnice, système de grottes Postojna Planina, Škocjanske Jame, Županova Jama) et grâce à dix espèces de 13 zones de percolation d’une grotte des Etats-Unis (Grotte Organ, Ouest de la Virginie). L’eau de percolation provient de l’épikarst, la partie supérieure du karst. Une fraction importante des espèces de copépodes trouvées (9 espèces en Slovénie et 3 dans l’Ouest de la Virginie) s’étendait sur une longueur maximum de 100 m. Ces dernières ainsi que d’autres distributions localisées étaient probablement issues de la colonisation par une population ancienne de surface, de zones localisées de l’épikarst, puis par une dispersion latérale dans la direction de l’écoulement dans l’épikarst. Ceci suggère que la distribution des copépodes pourrait potentiellement être utilisée pour identifier les principales trajectoires d’écoulement dans l’épikarst, sans utiliser l’injection de colorants ou d’autres traceurs.

Resumen

Se determina la distribución de 27 especies de copépodo en 35 gotas de cuatro cavernas de Eslovenia (Dimnice, Sistema de Caverna Planina Postojna, Jame Škocjanske, y Jama Županova), y de diez especies en 13 gotas de una caverna de Estados Unidos (Caverna Órgano, Virginia Occidental). El agua que gotea se deriva del epikarst, la piel del karst. Una fracción significativa de las especies de copépodos encontradas (9 especies en Eslovenia y 3 en Virginia Occidental) se presentaron en una extensión linear máxima de 100 m. Estas y otras distribuciones localizadas resultaron probablemente de colonización del epikarst por poblaciones superficiales ancestrales en una sola localización, con una expansión lateral subsiguiente en la dirección de flujo epikárstico. Esto sugiere que la distribución de copépodos podría tener un uso potencial para trazar rutas de flujo principales en epikarst sin tener la necesidad de inyectar colorantes u otros trazadores.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Aley T (2004) Findings from some hydrologic investigations in the epikarst. In: Jones WK, Culver DC, Herman JS (eds) Epikarst. Proceedings of the symposium held 1–4 October 2003, Shepherdstown, WV. Karst Waters Institute, Charles Town, WV, pp 79–84

  • Bakalowicz M (2004) The epikarst, the skin of karst. In: Jones WK, Culver DC, Herman JS (eds) Epikarst. Proceedings of the symposium held 1–4 October 2003, Shepherdstown, WV. Karst Waters Institute, Charles Town, WV, pp 16–22

  • Bricelj M, Čenčur Curk B (2005) Bacteriophage transport in the unsaturated zone of karstified limestone aquifers. In: Stevanovi Z, Milanovi P (eds) Water resources and environmental problems in karst. Int Assoc Hydrogeologists, Belgrade pp 109–114

  • Danielopol DL (1981) Distribution of ostracods in the groundwater of the northwestern coast of Euboea (Greece). Int J Speleol 11:91–104

    Google Scholar 

  • Gabrovšek F (2004) Attempts to model the early evolution of epikarst. In: Jones WK, Culver DC, Herman JS (eds) Epikarst. Proceedings of the symposium held 1–4 October 2003, Shepherdstown, WV. Karst Waters Institute, Charles Town, WV, pp 50–55

  • Gordon ND, McMahon TA, Finlayson BL (1999) Stream hydrology: an introduction for ecologists, Wiley, Chichester, England

    Google Scholar 

  • Griebler C (2001) Microbial ecology of the subsurface. In: Griebler C, Danielopol DL, Gibert J, Nachtnebel HP, Notenboom J (eds) Groundwater ecology: a tool for management of water resources. European Commission, Directorate General for Research, Vienna, pp 81–108

    Google Scholar 

  • Hancock PJ, Boulton AJ, Humphreys WF (2005) Aquifers and hyporheic zones: towards an ecological understanding of groundwater. Hydrogeol J 13:98–111

    Article  Google Scholar 

  • Jones WK, Culver DC, Herman JS (eds) (2004) Epikarst. Proceedings of the symposium held 1–4 October 2003, Shepherdstown, WV, Karst Waters Institute, Charles Town, WV

  • Kogovšek J, Šebela S (2004) Water tracing through the vadose zone above Postojnska Jama, Slovenia. Env Geol 45:992–1001

    Article  Google Scholar 

  • Malard, F, REygrobellet J-L, Mathieu J, Lafont M (1994) The use of invertebrate communities to describe groundwater flow and contaminant transport in a fractured rock aquifer. Arch Hydrobiol 131:93–110

    Google Scholar 

  • Pipan T (2005) Epikarst: a promising habitat. Copepod fauna, its diversity and ecology: a case study from Slovenia (Europe). ZRC Publishing, Karst Research Institute at ZRC SAZU, Postojna-Ljubljana, Slovenia

    Google Scholar 

  • Pipan T, Culver DC (2005a) Epikarst communities: biodiversity hotspots and potential water tracers. In: Stevanovi Z, Milanovi P (eds) Water resources and environmental problems in karst. Int Assoc Hydrogeologists, Belgrade, pp 823–830

  • Pipan T, Culver DC (2005b) Estimating biodiversity in the epikarstic zone of a West Virginia cave. J Caves Karst Stud 67:103–109

    Google Scholar 

  • Pipan T, Blejec A, Brancelj A (2006a) Multivariate analysis of copepod assemblages in epikarstic waters of some Slovenian caves. Hydrobiologia 559:213–223

    Article  Google Scholar 

  • Pipan T, Christman MC, Culver DC (2006b) Dynamics of epikarstic communities: microgeographic pattern and environmental determinants of epikarstic copepods in Organ Cave, West Virginia. Am Midl Nat 156:75–87

    Article  Google Scholar 

  • Reid J (2001) A human challenge: discovering and understanding continental copepod habitats. Hydrobiologia 453/454:201–226

    Article  Google Scholar 

  • Sall J, Creighton L, Lehman A (2005) JMP Start Statistics, 3rd edn. Brookes/Cole-Thompson. Belmont, CA

    Google Scholar 

  • Smart PL, Friederich H (1987) Water movement and storage in the unsaturated zone of maturely karstified carbonate aquifer, Mendip Hills, England. In: Proceedings of Conference on Environmental Problems in Karst Terranes and their Solutions, National Water Well Association, Dublin, OH, pp 59–87

  • Smith IR (1975) Turbulence in lakes and rivers. Special Publication 29, Fresh Water Biological Association, Far Sawrey, Ambleside, UK

    Google Scholar 

  • Trček B (2003) Epikarst zone and the karst aquifer behavior: a case study of the Hubelj catchment, Slovenia. Geological Survey of Slovenia, Ljubljana, Slovenia

    Google Scholar 

Download references

Acknowledgements

Support came from the Ministry of Higher Education, Science, and Technology of the Republic of Slovenia. In part, the data are the result of the National Scholarship Programme to Tanja Pipan (TP), supported by the World Federation of Scientists. Field research in West Virginia by TP and David Culver was supported by funds from the Center for Subterranean Biodiversity of the Karst Waters Institute and Cave Conservancy Foundation. Hydrogeology Journal’s managing editor and reviewers greatly clarified our thinking and the ideas presented here.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David C. Culver.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pipan, T., Culver, D.C. Copepod distribution as an indicator of epikarst system connectivity. Hydrogeol J 15, 817–822 (2007). https://doi.org/10.1007/s10040-006-0114-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10040-006-0114-4

Keywords

Navigation