Skip to main content

Advertisement

Log in

Assessing selected natural and anthropogenic impacts on freshwater lens morphology on small barrier Islands: Dog Island and St. George Island, Florida, USA

  • Report
  • Published:
Hydrogeology Journal Aims and scope Submit manuscript

Abstract

The freshwater lens morphologies of the barrier islands Dog Island and St. George Island on the panhandle coast of Florida (FL), USA, are controlled to varying degrees by both natural and anthropogenic factors. Variable-density groundwater flow models confirm that spatial variability of recharge values can account for the observed lens asymmetry on these islands. The depth to the base of the lens does not vary significantly seasonally. Human development has altered recharge patterns in some areas, locally thinning the freshwater lens. Aqueduct water supply to St. George Island represents ∼7–25% of natural recharge; higher recharge rates are required to simulate the lens on St. George Island than on Dog Island. On both islands, coastal erosion rates are sufficiently rapid that the freshwater lens may not be in equilibrium with current boundary conditions.

Résumé

La morphologie des lentilles d’eau douce des îles de Dog et de St. George, situés dans le district côtier de Florida-Etats Unis est contrôlé dans une mesure variable par des facteurs naturelles et humaines. Les modèles d’écoulement à densité variable des eaux souterraines confirment que la variation spatiale de la recharge peut expliquer les asymétries observées des lentilles des cettes îles. La profondeur des lentilles ne présente pas des variations saisonnières importantes. Les activités humaines ont modifié la recharge dans certaines zones en amincissant localement les lentilles d’eau douce. L’alimentation en eaux de l’île de St. George représente 7–25% de la recharge naturelle; pour simuler les lentilles de l’île de Dog il a été nécessaire d’introduire des valeurs plus élevées de la recharge par rapport aux ceux utilisés pour l’île de St. George. Pour les deux îles l’érosion côtière est assez rapide ainsi que les lentilles de eau douce ne sont pas en équilibre avec les conditions à la frontière.

Resumen

Las morfologías de los lentes de agua dulce en las islas de barrera: Islas Dog y St. George, en la costa alargada y estrecha de Florida, EUA, están controladas en diferentes grados por factores antropogénicos y naturales. Los modelos de flujo con densidad variable del agua subterránea, confirman que la variabilidad espacial de los valores de recarga, pueden ser la causa de la asimetría observada en los lentes de estas islas. La profundidad hasta la base de los lentes no varía significativamente con las estaciones climáticas. El desarrollo humano ha alterado las tendencias de recarga en algunas áreas, causando adelgazamiento local de los lentes de agua dulce. El abastecimiento de agua del acueducto en la Isla St. George, representa entre 7% y 25% de la recarga natural; por otro lado se necesitan cantidades mayores de recarga para simular los lentes en la Isla St. George que en la Isla Dog. En ambas islas, las tasas de erosión costera son tan rápidas, que las lentes de agua dulce podrían no estar en equilibrio con las condiciones actuales de frontera.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  • Anderson WP Jr, Evans DG, Snyder SW (2000) The effects of Holocene barrier-island evolution on water-table elevation, Hatteras Island, North Carolina, USA. Hydrogeol J 8:390–404

    Google Scholar 

  • Ayers JF (1998) Groundwater flow dynamics beneath atoll islands. IAHS-AISH Publication 253:397–404

    Google Scholar 

  • Collins WH III, Easley DH (1999) Fresh-water lens formation in an unconfined barrier-island aquifer. J Am Water Resour Assoc 35:1–21

    Google Scholar 

  • Cooper HH (1959) A hypothesis concerning the dynamic balance of fresh water and salt water in a coastal aquifer. J Geophys Res 64:461–467

    Google Scholar 

  • Corbett DR, Dillon K, Burnett W (2000) Tracing groundwater flow on a barrier island in the north-east Gulf of Mexico. Est Coast Shelf Sci

    Google Scholar 

  • Davis RA (1994) Geology of Holocene Barrier Island Systems. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Davis RA (1997) The evolving coast. Scientific American Library, New York

    Google Scholar 

  • Domenico PA, Schwartz FW (1998) Physical and chemical hydrogeology. Wiley, New York

    Google Scholar 

  • Donoghue JF, Tanner WF (1994) Effects of near-term sedimentologic evolution on the lifetime of estuarine resources. NOAA Tech Memorand NOS SRD 27

  • Dunne T, Leopold LB (1978) Water in environmental planning. W.H. Freeman, New York

    Google Scholar 

  • Essaid HI (1990) The computer model SHARP, a quasi-three-dimensional finite-difference model to simulate freshwater and saltwater flow in layered coastal aquifer systems. USGS Water Resour Invest Rep, pp 90–4130

  • Ferris JG (1963) Cyclic water-level fluctuations as a basis for determining aquifer transmissibility. USGS Water-Supply Pap 1536-I:305–318

    Google Scholar 

  • Fetter CW (1972) Position of the saline water interface beneath oceanic islands. Water Resour Res 8:1307–1315

    Google Scholar 

  • Fetter CW (1993) Contaminant hydrogeology. Macmillan, New York

    Google Scholar 

  • Guo W, Langevin CD (2002) User’s guide to SEAWAT: acomputer program for simulation of three-dimensional variable-density ground-water flow. USGS Open-File Rep, pp 01–434

  • Harris WH (1967) Stratification of fresh and salt water on barrier islands as a result of differences in sediment permeability. Water Resour Res 3:89–97

    Google Scholar 

  • Hubbert MK (1940) The theory of ground-water motion. J Geol 48:785–944

    Google Scholar 

  • Kidd RE, Planert M (1985) Development of a fresh water supply from the water-table aquifer on a barrier island. Am Water Resour Assoc Tech Pub Series 85–1, pp 69–71

  • Langevin CD, Stewart MT, Beaudoin CM (1998) Effects of seawater canals on Fresh water resources: an example from Big Pine Key, Florida. Groundwater 36:503–513

    Google Scholar 

  • Livingston RJ (1983) Resource atlas of the Apalachicola estuary. Florida Sea Grant College Report 55

  • Lloyd JW (1984) A review of some of the more important difficulties encountered in small island hydrogeological investigations. CSC Tech Publ Series 154:180–210

    Google Scholar 

  • McDonald MG, Harbaugh AW (1988) A modular three-dimensional finite-difference ground-water flow model. USGS Survey Tech Water Resour Invest, p 6

  • Otvos EG (1985) Barrier island genesis—questions of alternatives for the Apalachicola coast, northeastern Gulf of Mexico. J Coastal Res 1:267–278

    Google Scholar 

  • Ruppel C, Schultz G, Kruse S (2000) Anomalous freshwater lens morphology on a strip barrier island. Groundwater 38:872–881

    Google Scholar 

  • Schade CJ (1986) Coastal processes, St. George Island, Florida. Suite statistics and sediment history. Proc Symp Coast Sedimentol 7:143–155

    Google Scholar 

  • Schnable JE (1966) The evolution and development of part of the northwest Florida coast. PhD Thesis, Florida State University, Tallahassee, FL

    Google Scholar 

  • Schneider JC, Kruse SE (2003) A comparison of controls on freshwater lens morphology of small carbonate and siliciclastic islands: examples form barrier islands in Florida, USA. J Hydrol 284:253–269

    Google Scholar 

  • Simmons DL (1986) Geohydrology and ground-water quality on Shelter Island, Suffolk County, New York, 1983–84. USGS Water Resour Invest Rep 85-4165

  • Urish DW (1980) Asymmetric variation of a Ghyben-Herzberg lens. J Hydraulic Div, Proc, ASCE 107:1149–1158

    Google Scholar 

  • Urish DW, Ozbilgin MM (1989) The coastal ground-water boundary. Groundwater 27:310–315

    Google Scholar 

  • Vacher HL (1988a) Dupuit-Ghyben-Herzberg analysis of strip-island lenses. Geol Soc Am Bull 100:580–591

    Google Scholar 

  • Vacher HL (1988b) Ground water in barrier islands—theoretical analysis and evaluation of the unequal-sea level problem. J Coastal Res 4:139–148

    Google Scholar 

  • Vacher HL, Quinn T (eds) (1997) Geology and hydrogeology of carbonate islands. Elsevier, Amsterdam

    Google Scholar 

  • Wallis TN, Vacher HL, Stewart MT (1991) Hydrogeology of freshwater lens beneath a Holocene strandplain, Great Exuma, Bahamas. J Hydrol 125:93–109

    Google Scholar 

  • Wheatcraft SW, Buddemeier RW (1981). Atoll island hydrology. Groundwater 19:311–320

    Google Scholar 

  • Whittecar GR, Johnson CJ (1990) Hydrogeologic analysis of water table fluctuations on a barrier island, Cape Henry, Virginia. Abstracts with programs. Geol Soc Am 22:122–123

    Google Scholar 

  • Whittecar GR, Johnson CJ (1991) Geologic and hydrologic controls of water tables on regressive barrier islands. Virginia J Sci 42:222

    Google Scholar 

  • Zheng C, Wang PP (1998) MT3DMS, A modular three-dimensional multispecies transport model for simulation of advection, dispersion and chemical reactions of contaminants in groundwater systems, Vicksburg, Miss., Waterways Experiment Station, US Army Corps of Engineers

Download references

Acknowledgments

The study of Dog Island was funded by the Barrier Island Trust. St. George Island investigations were supported through a fellowship to J.C.S. from the NOAA National Estuarine Research Reserve program. We thank Lee Edmiston and the staff of the Apalachicola Bay Research Reserve, and Dianne Mellon of the Barrier Island Trust for logistical help and background material. Meghan Elliott, Nick Parker, Steve Scruggs, Darren Meadows, and Jim Inman contributed greatly to field work. We are grateful to Chris Langevin for making his SEAWAT code available and providing guidance with modeling. Mark Stewart, Peter Swarzenski, Tom Juster, Rick Oches, Chris Langevin, Perry Olcott, and an anonymous reviewer gave constructive reviews of the manuscript

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sarah E. Kruse.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schneider, J.C., Kruse, S.E. Assessing selected natural and anthropogenic impacts on freshwater lens morphology on small barrier Islands: Dog Island and St. George Island, Florida, USA. Hydrogeol J 14, 131–145 (2006). https://doi.org/10.1007/s10040-005-0442-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10040-005-0442-9

Keywords

Navigation