Skip to main content
Log in

Development and applications of groundwater remediation technologies in the USA

  • Paper
  • Published:
Hydrogeology Journal Aims and scope Submit manuscript

Abstract

The future of the development and application of groundwater remediation technologies will unfold in an atmosphere of heightened public concern and attention. Cleanup policy will undergo incremental change towards more comprehensive efforts which account for the impact of remediation on nearby resources. Newly discovered contaminants will cause the re-examination of “mature” technologies since they may be persistent, mobile and difficult to treat in-situ. Evaluations of the effectiveness of remedial technologies will eventually include by-product formation, geochemical consequences and sustainability. Long-term field trials of remedial technologies alone can provide the data necessary to support claims of effectiveness.

Résumé

Dans le futur, le développement et les applications des technologies de traitement des eaux souterraines seront déroulés en tenant compte de l’inquiétude et l’attention croissante de l’opinion publique. La politique de nettoyage va subir un changement vers des efforts plus compréhensifs qui prendront en compte l’impact du traitement sur les ressources voisines. Les nouveaux contaminants seront persistants, mobiles et difficile de traiter in situ; par conséquence ils vont provoquer la reexamination des technologies consacrées. L’évaluation de l’efficacité des technologies de traitement doit considérer l’apparition des produits secondaires ainsi que les conséquences géochimiques et le développement durable. Seulement les essais in situ, pendant des longues périodes sur les technologies peuvent fournir les éléments nécessaires pour démontrer leur efficacité.

Resumen

El futuro del desarrollo y de la aplicación de las tecnologías para la recuperación del agua subterránea, se revelará en una atmósfera de gran atención e interés público elevado. La política de limpieza sufrirá un cambio adicional hacia esfuerzos más tangibles, los cuales incluyan el impacto de la recuperación en los recursos circundantes. Los contaminantes recientemente descubiertos causarán la revisión de las tecnologías “maduras”, pues aquellos pueden ser persistentes, móviles y difíciles para tratar in situ. Las evaluaciones de la efectividad de las tecnologías de recuperación, incluirán eventualmente la formación de subproductos, consecuencias geoquímicas y la sostenibilidad. Las experiencias de campo de largo plazo, que se han hecho aplicando tecnologías de recuperación, pueden por si solas suministrar los datos necesarios para soportar las afirmaciones sobre su efectividad.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Barcelona MJ, Holm TR (1991) Oxidation–reduction capacities of aquifer solids. Environ Sci Technol 25(9):1565–1572 (Discussion: Environ Sci Tchnol 26(12):2538–2539 (1992))

    Google Scholar 

  • Barcelona MJ, Xie G (2001) In-situ lifetimes and kinetics of a reductive Whey barrier and on oxidative ORC barrier in the subsurface. Environ Sci Technol 35(16):3378–3385

    Google Scholar 

  • Devlin JF, Eady R, Butler BJ (2000) The effects of electron donor and granular iron on nitrate transformation rates in sediments from a municipal water supply aquifer. J Contam Hydrol 46:81–97

    CAS  Google Scholar 

  • Grassi S, Netti R (2000) Sea water intrusion and mercury pollution of some coastal aquifers in the province of Grosseto (Southern Tuscany Italy). J Hydrol 37:198–211

    Article  Google Scholar 

  • Hartog N (2003) Redox behavior of aquifer sediments. PhD Thesis, University of Utrecht, Utrecht, The Netherlands (in English)

  • Heberer T, Dunnbier U, Reilich C, Stan HJ (1997) Detection of drugs and drug metabolites in groundwater samples of a drinking water treatment plant. Fresenius Environ Bull 6:438–443

    CAS  Google Scholar 

  • Holm JV, Rugge K, Berg PL, Christenson TH (1995) Occurrence and distribution of pharmaceutical organic compounds in the groundwater environment of a landfill (Grinsted, Denmark). Environ Sci Technol 29(5):1415–1420

    Google Scholar 

  • Hyndman DW, Dybas MJ, Forney L, Heine R, Mayotte T, Phanikumar MS, Tatara G, Tiedje J, Voice T, Wallace R, Wiggert D, Zhao X, Griddle CS (2000) Hydraulic characterization and design of a full-scale biocurtain. Groundwater 38(3):462–474

    CAS  Google Scholar 

  • Kolpin D, Furlong E, Meyer M, Thurman E, Zaugg S, Barber L, Baxton H (2002) Pharmeceuticals, hormones and other organic wastewater contaminants in U.S. Streams, 1999–2000: a national renaissance. Environ Sci Technol 36:1202–1211

    CAS  PubMed  Google Scholar 

  • Moran RJ (2003) Remediation rationalizations: impediments to better cleanup policy, groundwater monitoring and remediation 23(4):42–46

    Google Scholar 

  • National Research Council (1994) Alternatives for groundwater cleanup. National Academy Press, Washington, DC

    Google Scholar 

  • Nomocatcat J, Fang J, Barcelona MJ, Quibuyen ATO, Abrajano TA (2003) Trimethylbenzoic acids as metabolite signatures in the biogeochemical evolution of an aquifer contaminated with jet fuel hydrocarbons. J Contam Hydrol 67:177–194

    PubMed  Google Scholar 

  • Nyer EK, Bedessem JM (2003) Above ground treatment equipment: back in fashion. Groundwater Monit Remed 23(4):28–34

    Google Scholar 

  • Orange County Water District (1998) 2020 Master Plan Report. Fountain Valley, CA

    Google Scholar 

  • (2004) Parsons Corporation Principles and Practices of Enhanced Anaerobic Bioremediation of Chlorinated Solvents for Airforce Center for Environmental Excellence Brooks-City Base, TX, Naval Facilities Engineering Service Center Port Hueneme, CA, DOD/Supported by ESTCP Environmental Security, Technology Certification Program, 427 pp

  • Puls RW, Blowes DW, Gillham RW (1999a) Long-term performance monitoring for a permeable reactive barrier at the U.S. Coast Guard Support Center, Elizabeth City, North Carolina. J Hazard Mater 68(1):109–124

    CAS  PubMed  Google Scholar 

  • Sarr D (2001) Zerovalent iron permeable reactive barriers—how long will they last? Remediation Spring 1–18

  • Scheytt T, Mersmann P , Leidig M, Pekdeger A, Heberer T (2004) Transport of pharmaceutically active compounds in saturated laboratory columns. Groundwater 42(5):767–773

    CAS  Google Scholar 

  • Sudicky EA (1986) A natural gradient experiment on solute transport in a sand aquifer: spatial variability of hydraulic conductivity and its role in the dispersion process. Water Resour Res 22(13):2069–2082

    CAS  Google Scholar 

  • Ternes TA (1998) Occurrence of drugs in German sewage treatment plants and rivers. Water Res 32(11):3245–3260

    CAS  Google Scholar 

  • U.S. Environmental Protection Agency (2003) Capstone Report on the Application, Monitoring, and Performance of Permeable Reactive Barriers for Groundwater Remediation. Volume 1, Performance Evaluations at Two-Sites, EPA/600/R-03/045a, USEPA-NRMRL, Cincinnati, OH

  • U.S. Environmental Protection Agency (1992) Evaluation of Groundwater Extraction Remedies: Phase II, Vol. 1, Summary Report, EPA-OERR 9355, 4-05, Washington, DC

    Google Scholar 

  • U.S. Environmental Protection Agency (1989) Evaluation of Groundwater Extraction Remedies: Vol. 1, Summary Report, EPA-OERR EPA 540/2-89/054, Washington, DC

    Google Scholar 

  • Wilkins et al (2002) Long-term Performance of Permeable Reactive Barriers using Zero-Valent Iron: An Evolution at two sites. USEPA. Environmental Research Brief EPA/600/S-02/001. USEPA-NRMRL, Cincinnati, OH

  • Xie G, Barcelona MJ (2003) Sequential chemical oxidation and aerobic biodegradation of equivalent carbon number-based hydrocarbon fractions in jet fuel. Environ Sci Technol 37(20):4751–4760

    Google Scholar 

Download references

Acknowledgements

The author would like to thank students, colleagues, and in particular, Jordi Guimera, James Barker, and Richard Wilkin for their constructive and insightful comments in review of the manuscript. The patience and persistence shown by Cliff Voss, editor of this journal, with the process is very much appreciate

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael J. Barcelona.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barcelona, M.J. Development and applications of groundwater remediation technologies in the USA. Hydrogeol J 13, 288–294 (2005). https://doi.org/10.1007/s10040-004-0419-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10040-004-0419-0

Keywords

Navigation