Skip to main content
Log in

The origin of increased salinity in the Cambrian-Vendian aquifer system on the Kopli Peninsula, northern Estonia

  • Report
  • Published:
Hydrogeology Journal Aims and scope Submit manuscript

Abstract

Monitoring of the confined Cambrian-Vendian aquifer system utilised for industrial water supply at Kopli Peninsula in Tallinn over 24 years reveals remarkable changes in chemical composition of groundwater. A relatively fast 1.5 to 3.0-fold increase in TDS and in concentrations of major ions in abstracted groundwater is the consequence of heavy pumping. The main sources of dissolved load in Cambrian-Vendian groundwater are the leaching of host rock and the other geochemical processes that occur in the saturated zone. Underlying crystalline basement, which comprises saline groundwater in its upper weathered and fissured portion, and which is hydraulically connected with the overlying Cambrian-Vendian aquifer system, is the second important source of ions. The fractured basement and its clayey weathering crust host the Ca-Cl type groundwater, which is characterised by high TDS values (2–20 g/L). Intensive water abstraction accelerates the exchange of groundwaters and increases the area of influence of pumping. Chemical and isotopic studies of groundwater indicate an increasing contribution of old brackish water from the crystalline basement and rule out the potential implication of an intrusion of seawater into aquifer.

Résumé

L’origine de la salinité croissante dans le système aquifère du Cambrien-Vendien dans la péninsule de Kopli, nord de l’Estonie

Le suivi à long terme du système aquifère captif du Cambrien-Vendien utilisé pour l’approvisionnement d’eaux industrielles dans la Péninsule de Kopli, nord de l’Estonie, révèle de remarquables changements dans la composition chimique des eaux souterraines. Une augmentation de facteur 1.5 à 3 de la TDS et des concentrations en ions majeurs dans l’eau souterraine est la conséquence de pompages intensifs. Les sources principales des charges dissoutes dans les eaux de l’aquifère du Cambrien-Vendien sont le lessivage des roches et d’autres phénomènes géochimiques ayant lieu dans la zone saturée. Le soubassement rocheux cristallin, qui renferme des eaux souterraines salines dans sa partie supérieure altérée et fissurée, et est hydrauliquement connecté avec l’aquifère supérieur du Cambrien-Vendien, est la deuxième importante source d’ions. Le soubassement fracturé et le matériel argileux de l’altération, renferme l’eau souterraine de type Ca-Cl, caractérisée par un haut TDS (2–20 g/l). A cause de la mobilisation intensive de l’eau les échanges d’eau souterraine est sont accélérés et la zone d’influence des pompages augmentent. Les études chimiques et isotopiques indiquent une contribution croissante du drainage des eaux du soubassement cristallin. L’intrusion d’eaux salées de la mer dans le système aquifère n’est pas un phénomène évident.

Resumen

El origen del incremento en salinidad en un sistema de acuíferos Cámbrico-Vendiano en la Península Kopli, norte de Estonie

Monitoreo a largo plazo de un sistema de acuíferos confinados, de edad Cámbrico-Vendiano, que se utiliza como fuente de abastecimiento industrial en la Península Kopli, al norte de Estonie, revela cambios notables en la composición química del agua subterránea. Un incremento de 1.5 a 3 veces en TDS y en concentraciones de iones mayores en agua subterránea explotada ha sido ocasionado por bombeo fuerte. Las fuentes principales de carga disuelta en el agua subterránea Cámbrico-Vendiano son la lixiviación de la roca encajonante y los procesos geoquímicos que ocurren en la zona saturada. Basamento cristalino subyacente, que aloja agua subterránea salada en la parte superior intemperizada y fisurada, y está conectado hidráulicamente con el sistema acuífero Cámbrico-Vendiano sobreyacente, es la segunda fuente importante de iones. El basamento fracturado y su corteza de intemperismo arcillosa alojan agua subterránea de tipo Ca-Cl la cual se caracteriza por valores altos de TDS (2–20 g/l). Debido a extracción intensiva se ha acelerado el intercambio de agua subterránea y se ha incrementado el área de influencia del bombeo. Los estudios químicos e isotópicos de agua subterránea indican una contribución creciente por filtración derivada del basamento cristalino. Es evidente una intrusión de agua salada hacia el sistema de acuíferos con implicaciones subsecuentes para la calidad del agua.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6a–d
Fig. 7

Similar content being viewed by others

References

  • Andreasen DC, Fleck WB (1997) Use of bromide:chloride ratios to differentiate potential sources of chloride in a shallow, unconfined aquifer affected by brackish-water intrusion. Hydrogeol J 5(2):17–26

    Article  Google Scholar 

  • Appelo CAJ, Postma D (1999) Geochemistry, groundwater and pollution. A.A. Balkema, Rotterdam

  • Boldõreva N, Perens R, Savitski L (2002) Põhjavee seisund (State of groundwater). In: Roose A (ed) Eesti Keskkonnaseire 2001 (Estonian environmental monitoring 2001). Tartu University Press, Tartu, pp 37–46

  • Chen H, Zhang Y, Wang X, Ren Z, Li L (1997) Salt-water intrusion in the lower reaches of the Weihe River, Shandong Province, China. Hydrogeol J 5(3):82–88

    Article  Google Scholar 

  • Clark ID, Fritz P (1997) Environmental isotopes in hydrogeology. Lewis Publishers, Boca Raton, New York

  • Council Directive 98/83/EEC (1998) On the quality of water intended for human consumption (revision of Council Directive 80/778/EEC)

  • Cruz JV, Silva MO (2000) Groundwater salinization in Pico Island (Azores, Portugal): origin and mechanisms. Environ Geol 39(10):1181–1189

    CAS  Google Scholar 

  • Custodio E (2002) Aquifer overexploitation: what does it mean? Hydrogeol J 10(2):254–277

    Article  Google Scholar 

  • Edmunds WM, Hinsby K, Marlin C, Melo T, Manzano M, Vaikmäe R, Travi Y (2001) Evolution of groundwater systems at the European coastline. In: Edmunds WM, Milne CJ (eds) Palaeowaters of coastal Europe: evolution of groundwater since the late Pleistocene. Geol Soc Lond Spec Publ 189:289–311

    CAS  Google Scholar 

  • Edmunds WM, Savage D (1991) Geochemical characteristics of groundwater in granites and related crystalline rocks. In: Downing RA, Wilkinson WB (eds) Applied Groundwater Hydrol—a British perspective. Clarendon Press, Oxford, pp 266–282

  • Epstein S, Mayeda TK (1953) Variations of the 18O/16O ratio in natural waters. Geochim Cosmochim Acta 4:213

    CAS  Google Scholar 

  • Fetter CW (1993) Contaminant hydrogeology. Macmillan Publishing Co., New York

  • Fontes J-C, Garnier J-M (1979) Determination of the initial 14C activity of the total dissolved carbon: a review of the existing models and a new approach. Water Resour Res 15:399–413

    Google Scholar 

  • Frape SK, Fritz P (1987) Geochemical trends for groundwaters from the Canadian Shield. In: Fritz P, Frape SK (eds) Saline water and gases in crystalline rocks. Geol Assoc Can Spec Pap 33:19–38

    CAS  Google Scholar 

  • Giménez E, Morell I (1997) Hydrogeochemical analysis of salinization processes in the coastal aquifer of Oropesa (Castellón, Spain). Environ Geol 29(1/2):118–131

    Google Scholar 

  • Gupta SG, Polach HA (1985) Radiocarbon dating practices at ANU. Handbook. Radiocarbon Laboratory, Research School of Pacific Studies, ANU, Canberra, 173 pp

  • Hem JD (1992) Study and interpretation of the chemical characteristics of natural water, 3rd edn. US Geol Surv Water Supply Pap 2254, 263 pp

  • Hilmo BO, Saether OM, Tvedten S (1992) Groundwater chemistry during test-pumping at Sundby, Verdal, Mid-Norway. Norges Geologiske Undersokelse Bulletin 422:27–35

    CAS  Google Scholar 

  • Hyyppä J (1984) Pohjaveden kemiallinen koostumus Suomen kallioperässä (Chemical composition of ground water in the bedrock of Finland). Nuclear Waste Commission of Finnish Power Companies Report YST-84-10, 69 pp

  • Ingerson E, Pearson FJ (1964) Estimating of age and rate of motion of groundwater by the 14C method. In: Hiyake Y, Koyama T (eds) Recent researches in the fields of atmosphere, hydrosphere and nuclear geochemistry, Nagoya University, pp 263–283

  • Joogivee kvaliteedi-ja kontrollinõuded ning analüüsimeetodid (2001) (The quality and monitoring requirements for drinking water and methods of analysis) SOMm RTL 2001/100/1369

  • Karise V (1997) Composition and properties of groundwater under natural conditions. In: Raukas A, Teedumäe A (eds) Geology and mineral resources of Estonia. Estonian Academy Publishers, Tallinn, pp 152–156

  • Karro E (1999) Long-term changes in groundwater chemistry in four coastal groundwater supply plants in southern Finland. Boreal Environ Res 4:175–186

    CAS  Google Scholar 

  • Koistinen T, Klein V, Koppelmaa H, Lahtinen R, Nironen M, Puura V, Saltykova T, Tikhomirov S, Yanovskiy A (1996) Paleoproterozoic Svecofennian orogenic belt in the surroundings of the Gulf of Finland. In: Koistinen T (ed) Explanation to the map of Precambrian basement of the Gulf of Finland and surrounding area 1:1 million. Geol Surv Fin Spec Pap 21:21–57

    Google Scholar 

  • Martínez DE, Bocanegra EM (2002) Hydrogeochemistry and cation-exchange processes in the coastal aquifer of Mar Del Plata, Argentina. Hydrogeol J 10(3):393–408

    Article  Google Scholar 

  • Mitrega J, Lahermo P (1991) The occurrence of shallow brackish and saline groundwaters in the crystalline bedrock of Finnish coastal areas. Geol Surv Fin Rep Investigat 97

  • Mokrik R (1997) The palaeohydrogeology of the Baltic Basin. Tartu University Press, Tartu

  • Mokrik R (2000) Groundwater formation model of the Cambrian-Vendian aquifer during Quaternary in the Baltic Basin. Lithosphere 4:134–136

    Google Scholar 

  • Mokrik R, Mažeika J (2002) Paleohydrogeological reconstruction of groundwater recharge during Late Weichselian in the Baltic Basin. Geologija 39:49–57

    Google Scholar 

  • Nordstrom DK, Ball JW, Donahoe RJ, Whittemore D (1989) Groundwater chemistry and water-rock interactions at Stripa. Geochim Cosmochim Acta 53:1727–1740

    Google Scholar 

  • Perens R, Savva V, Lelgus M, Parm T (2001) The hydrogeochemical atlas of Estonia (CD version). Geol Surv Estonia, Tallinn

  • Perens R, Vallner L (1997) Water-bearing formation. In: Raukas A, Teedumäe A (eds) Geology and mineral resources of Estonia. Estonian Academy Publishers, Tallinn, pp 137–145

  • Perttilä M, Tulkki P, Pietikäinen S (1980) Mean values and trends of hydrographical and chemical properties of the Gulf of Finland 1962–1978. Fin Mar Res 247:38–50

    Google Scholar 

  • Petalas CP, Diamantis IB (1999) Origin and distribution of saline groundwaters in the upper Miocene aquifer system, coastal Rhodope area, northeastern Greece. Hydrogeol J 7(3):305–316

    Article  Google Scholar 

  • Piotrowski JA (1997) Subglacial hydrology in North-western Germany during the last glaciation: groundwater flow, tunnel valleys and hydrological cycles. Quat Sci Rev 16:169–185

    Article  Google Scholar 

  • Punning J-M, Toots M, Vaikmäe R (1987) Oxygen-18 in Estonian natural waters. Isotopenpraxis 17:27–31

    Google Scholar 

  • Punning J-M, Vaikmäe R, Mäekivi S (1991) Oxygen-18 variations in the Baltic Sea. Int J Radiat Appl Instrument, Part E. Nucl Geophys 5:529–539

    CAS  Google Scholar 

  • Puura V, Klein V, Koppelmaa H, Niin M (1997) Precambrian basement. In: Raukas A, Teedumäe A (eds) Geology and mineral resources of Estonia. Estonian Academy Publishers, Tallinn, pp 27–34

  • Puura V, Vaher R, Klein V, Koppelmaa H, Niin M, Vanamb V, Kirs J (1983) The crystalline basement of Estonian territory (in Russian). Nauka, Moscow

  • Raidla V (2003) Formation of carbon content and radiocarbon dating of groundwater in Cambrian-Vendian aquifer system in Estonia. Unpublished MSc Thesis, Mining Institute, Tallinn Technical University, Tallinn, 58 pp

  • Rämö OT, Haapala I (1995) One hundred years of Rapakivi Granite. Mineral Petrol 52:129–185

    Google Scholar 

  • Rankama K, Sahama ThG (1950) Geochemistry. University of Chicago Press, Chicago

  • Raukas A, Teedumäe A (1997) Geology and mineral resources of Estonia. Estonian Academy Publishers, Tallinn

  • Richter BC, Kreitler CW (1993) Geochemical techniques for identifying sources of ground-water salinization, Boca Raton, FL, C.K. Smoley

  • Savitskaja L (1999) Põhjavee seisund 1997–1998. aastal (State of groundwater in 1997–1998), Geol Surv Estonia, Tallinn

  • Savitskaja L, Viigand A (1994) Kambriumi-Vendi veekompleksi põhjavee mikrokomponentide ja isotoopkoostise uurimisest joogivee kvaliteedi hindamiseks Põhja-Eestis (Investigation of minor components and isotopic composition of Cambrian-Vendian aquifer system for assessment of drinking water quality in Northern Estonia). Geol Surv Estonia, Report of Investigation 4870

  • Savitski L (2001a) Põhjaveeseire Balti Laevaremonditehase veehaardel 2001. a. (Groundwater monitoring at the groundwater supply plant of Baltic Ship Repairers in 2001). Geol Surv Estonia, Report of Investigation 7316

  • Savitski L (2001b) Põhjaveeseire AS Pakterminali veehaardel 2001. a. (Groundwater monitoring at the groundwater supply plant of Pakterminal Ltd in 2001). Geol Surv Estonia, Report of Investigation 7314

  • Steinich B, Escolero O, Marín LE (1998) Salt-water intrusion and nitrate contamination in the Valley of Hermosillo and El Sahuaral coastal aquifers, Sonora, Mexico. Hydrogeol J 6(4):518–526

    Article  Google Scholar 

  • Tavast E (1997) Bedrock topography. In: Raukas A, Teedumäe A (eds) Geology and mineral resources of Estonia. Estonian Academy Publishers, Tallinn, pp 252–255

  • Vaikmäe R, Vallner L (1989) Oxygen-18 in Estonian groundwaters. Fifth Working Meeting on Isotopes in Nature, Leipzig, 25–29 September, pp 161–162

  • Vaikmäe R, Vallner L, Loosli HH, Blaser PC, Juillard-Tardent M (2001) Palaeogroundwater of glacial origin in the Cambrian-Vendian aquifer of northern Estonia. In: Edmunds WM, Milne CJ (eds) Palaeowaters of coastal Europe: evolution of groundwater since the late Pleistocene. Geol Soc Lond Spec Publ 189:17–27

    Google Scholar 

  • Vallner L (1997) Groundwater flow. In: Raukas A, Teedumäe A (eds) Geology and mineral resources of Estonia. Estonian Academy Publishers, Tallinn, pp 145–152

  • Vallner L (2003) Hydrogeological model of Estonia and its applications. Proceedings of the Estonian Academy of Sciences, Geology 52(3):179–192

  • Vallner L, Savitskaja L (1997) Groundwater extraction and safe yield. In: Raukas A, Teedumäe A (eds) Geology and mineral resources of Estonia. Estonian Academy Publishers, Tallinn, pp 159–162

  • Van Olphen H (1977) An introduction to clay colloid chemistry. Wiley-Interscience, New York

  • Wigley TM (1977) Carbon-14 dating of groundwater from closed and open systems. Water Resour Res 11:324–328

    Google Scholar 

  • Yakirevich A, Melloul A, Sorek S, Shaath S, Borisov V (1998) Simulation of seawater intrusion into the Khan Yunis area of the Gaza Strip coastal aquifer. Hydrogeol J 6(4):549–559

    Article  Google Scholar 

  • Yezhova M, Polyakov V, Tkachenko A, Savitski L, Belkina V (1996) Palaeowaters of North Estonia and their influence on changes of resources and the quality of fresh groundwaters of large coastal water supplies. Geologija 19:37–40

    Google Scholar 

Download references

Acknowledgements

Many individuals and organizations have contributed to this paper. The authors thank the staff of the Geological Survey of Estonia for providing the long-term groundwater monitoring data. This study has been carried out with the financial support of Estonian Science Foundation (ESF) Grant no 4906. Isotopic investigations were financed by the EC Framework V project EVK1-CT1999–0006 “BaSeLiNe” and by the ESF Grant no 4161 and performed in the Laboratory of isotope-palaeoclimatology of the Institute of Geology at Tallinn Technical University. Reviews and suggestions by Dr. Martine Savard and Dr. Miroslov Nastev greatly improved the quality of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Enn Karro.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Karro, E., Marandi, A. & Vaikmäe, R. The origin of increased salinity in the Cambrian-Vendian aquifer system on the Kopli Peninsula, northern Estonia. Hydrogeology Journal 12, 424–435 (2004). https://doi.org/10.1007/s10040-004-0339-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10040-004-0339-z

Keywords

Navigation