Skip to main content

Advertisement

Log in

The magnetic resonance sounding technique and its use for groundwater investigations

  • Paper
  • Published:
Hydrogeology Journal Aims and scope Submit manuscript

Abstract

A commercial version of the magnetic resonance sounding (MRS) technique became available in 1996. At that time, ITC research team started to investigate the MRS technique with respect to its appropriateness to groundwater investigations. MRS is the only non-invasive surface geophysical technique with an inherent selectivity to free hydrogen and, therefore, to groundwater. The signal amplitude inversion allows quantifying free water content as a function of depth and signal decay rate inversion characterizes pore size with depth. The technique is limited in its depth investigation capability mainly by the size of its excitation/sensing loop, by the electric conductivity of the media, by the ambient noise level and by the Earth's magnetic field value. Two field cases illustrate MRS applications. A conglomeratic aquifer within metamorphic fractured rock sequence in Portugal shows the MRS response in a low porosity environment and unconsolidated porous aquifer system in the Netherlands, presents an opposite case of high porosity environment.

Résumé

Une réalisation commerciale de Sondage par Résonance Magnétique (SRM) est disponible depuis 1996. À cette époque, une équipe de recherche d'ITC a commencé à étudier la pertinence de la technique SRM pour l'étude des aquifères. Le SRM est la seule technique géophysique non-invasive de surface qui présente une sélectivité inhérente à l'hydrogène libre et par conséquent à l'eau souterraine. L'inversion de l'amplitude du signal permet de quantifier la teneur en eau libre en fonction de la profondeur et l'inversion du taux de décroissance du signal caractérise la taille des pores en fonction de la profondeur. La technique est limitée pour sa profondeur d'investigation surtout par la dimension de la boucle d'excitation/détection, la conductivité électrique du milieu, le niveau du bruit ambiant et la valeur du champ magnétique terrestre. Deux exemples illustrent des applications du SRM. Un aquifère conglomératique dans une séquence fracturée métamorphique au Portugal montre la réponse du SRM dans un milieu à faible porosité et un système aquifère poreux non consolidé des Pays-Bas présente la situation opposée d'un milieu à forte porosité.

Resumen

En 1996, apareció una versión comercial de la técnica de Sondeos mediante Resonancia Magnética (SRM). En aquel momento, el equipo de investigación del ITC comenzó a estudiar la utilidad de dicha técnica para su aplicación a las aguas subterráneas. Los SRM son la única técnica geofísica de superficie no invasiva que posee una selectividad inherente al hidrógeno libre y, por tanto, a las aguas subterráneas. La inversión de la amplitud de la señal permite cuantificar el contenido de agua libre en función de la profundidad, mientras que la inversión de la tasa de decaimiento de la señal caracteriza el tamaño de poro con la profundidad. La técnica está limitada en su capacidad para investigaciones profundas esencialmente por el tamaño del bucle de excitación/detección, por la conductividad eléctrica del medio, por el nivel de ruido ambiental y por el valor del campo magnético terrestre. Se ilustra la aplicación de los SRM mediante dos ejemplos de campo: el primero consiste en un acuífero de conglomerados intercalados en una secuencia de rocas fracturadas, en Portugal, con lo que se muestra la respuesta de los SRM en un medio de baja porosidad; el segundo ejemplo trata de un sistema acuífero en materiales no consolidados, en los Países Bajos, que supone el caso contrario de un medio de alta porosidad.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

Notes

  1. Here the investigated volume is specified simply in terms of a unidimensional inversion. Eikam (1999), Weichmann et al. (2000) and Weichmann et al. (2002) provide some insights on the volume investigated with the MRS technique.

References

  • Allen D, Andreani M, Badry R, Flaum C, Gossenberg P, Horkowitz J, Singer, White J (1997) How to use borehole NMR. Schlumberger's Oilfield Rev Summer:34–57

  • Coates GR, Marschall D, Mardon D, Galford J (1998) A new characterization of bulk-volume irreducible using magnetic resonance. Log Anal Jan–Feb:51–63

  • Eikam A (1999) Modellierung von SNMR-Anfangsamplituden. MSc Thesis, Technical University, Berlin

  • Goldman M, Rabinovich B, Rabinovich M, Gilad D, Gev I, Schirov M (1994) Applications of the integrated NMR-TDEM method in groundwater exploration in Israel. J Appl Geophys 31:27–52

    Google Scholar 

  • Guillen A, Legchenko A (2002) Application of linear programming techniques to the inversion of proton magnetic resonance measurements for water prospecting from the surface. J Appl Geophys 50:149–162

    Article  Google Scholar 

  • IRIS Instruments (2001) NUMISPlus user manual. IRIS Instruments, France

  • Kenyon WE, Howard JJ, Sezginer A, Straley C, Matteson A, Horkowitz K, Ehrlich R (1989) Pore-size distribution and NMR in microporous cherty sandstones. SPWLA 13th Annual logging Symposium, paper LL

  • Kenyon WE (1997) Petrophysical principles of applications of NMR logging. Log Anal March–April:21–43

  • Kenyon WE, Gubelin G (1995) Nuclear magnetic resonance imaging—technology for the 21st century. Oilfield Review, Autumn

  • Kgothlang L (2000) Evaluation of the magnetic resonance sounding technique as a tool for groundwater exploration. Case study in Botswana. MSc Thesis, ITC, Delft

  • Legchenko AV, Shushakov OA (1998) Inversion of surface NMR data. Geophysics 63:75–84

    Article  Google Scholar 

  • Legchenko A, Valla P (2002) A review of the basic principles for proton magnetic resonance sounding measurements. J Appl Geophys 50:3–19

    Article  Google Scholar 

  • Legchenko A, Baltassat JM, Beauce A, Bernard J (2002) Nuclear magnetic resonance as a geophysical tool for hydrogeologists. J Appl Geophys 50:21–46

    Article  Google Scholar 

  • Lieblich DA, Legchenko A, Haeni FP, Portselan A (1994) Surface nuclear magnetic experiments to detect subsurface water at Haddam Meadows, Connecticut. Proceedings SAGEEP-1994, Boston, pp 717–736

  • Lubczynski MW (1997) Application of numerical flow modelling combined with remote sensing and GIS techniques for the quantification of regional groundwater resources in hard rock terrain. Int Assoc Hydrol Soc Publ. no 241

  • Marques da Costa A (1998) Sistema aquifero Moura-Ficalho. 4th Water Congress, Lisbon

  • Marsily G (1986) Quantitative hydrogeology. Academic Press, London

  • Meju MA, Denton P, Fenning P (2002) Surface NMR sounding and inversion to detect groundwater in key aquifers in England: comparisons with VES-TEM methods. J Appl Geophys 50:95–111

    Article  Google Scholar 

  • Mohnke O, Yaramanci U (2002) Smooth and block inversion of surface NMR amplitudes and decay times using simulated annealing. J Appl Geophys 50:163–177

    Article  Google Scholar 

  • NASA (2000) LIS and OTD web site. http://www.thunder.msfc.nasa.gov

  • Plata J, Rubio F (2002) MRS experiments in a noisy area of a detrital aquifer in the south of Spain. J Appl Geophys 50:83–94

    Article  Google Scholar 

  • Roy J (2000) MRS surveys under favorable conditions of S/N ratio; 6th EEGS-ES meeting. Bochum, Germany

  • Roy J, Lubczynski M (2000a) MRS: introduction to a new geophysical technique and its current status. Iero Congreso Cubano de Geofisica, Memorias de Geoinfo. Proceedings on CD-ROM

  • Roy J, Lubczynski MW (2000b) The MRS technique for groundwater resources evaluation—test results from selected sites in Southern Africa. In: Sililo O et al. (eds) Proceedings of the XXX IAH Congress on Groundwater: Past Achievements and Future Challenges. Cape Town, 26 November–1 December. Balkema, Rotterdam, ISBN 90-5809-1597, pp 273–279

  • Schirov M, Legchenko A, Creer G (1991) A new direct non invasive groundwater detection technology for Australia. Explor Geophys 22:333–338

    Google Scholar 

  • Semenov AG (1987) NMR Hydroscope for water prospecting. Proceedings of a Seminar on Geotomography, Indian Geophysical Union, Hyderabad, pp 66–67

  • Sen PN, Straley C, Kenyon WE, Whittingham (1990) Surface-to-volume ratio, charge density, nuclear magnetic relaxation, and permeability in clay-bearing sandstones. Geophysics 55:61–69

    Article  Google Scholar 

  • Shushakov OA (1996) Surface NMR measurement of proton relaxation times in medium to coarse-grained sand aquifer. Magnetic Resonance Imaging 14:959–960

    Article  CAS  PubMed  Google Scholar 

  • Slichter CP (1996) Principles of magnetic resonance, 3rd edn. Springer, Berlin Heidelberg New York

  • Straley C, Rossini D, Vinegar H, Tutunjian P, Morriss C (1997) Core analysis by low field NMR. Log Anal March–April:84–94

  • Supper R, Jochum B, Hübl G, Römer A, Arndt R (2002) SNMR test measurements in Austria. J Appl Geophys 50:113–121

    Article  Google Scholar 

  • TNO (1998) DINO and REGIS systems, TNO http://www.nitg.tno.nl/eng/

  • Trushkin DV, Shushakov OA, Legchenko AV (1994) The potential of a noise-reducing antenna for surface NMR groundwater surveys in the Earth's magnetic field. Geophys Prospect 42:855–862

    Google Scholar 

  • Valla P, Yaramanci U (2002) Foreword from the guest editors. J Appl Geophys 50:1–2

    Article  Google Scholar 

  • Varian RH (1962) Ground liquid prospecting method and apparatus. US Patent 3,019,383

  • Weichmann PB, Lavely EM, Ritzwoller M (2000) Theory of surface nuclear magnetic resonance with applications to geophysical imaging problems. Phys Rev E 62 (1):1290–1312

    Article  Google Scholar 

  • Weichmann PB, Lun DR, Ritzwoller MH, Lavely EM (2002) Study of surface nuclear magnetic resonance inverse problems. J Appl Geophys 50:129–147

    Article  Google Scholar 

  • Yaramanci U, Lange G, Hertrich M (2002) Aquifer characterisation using surface NMR jointly with other geophysical techniques at the Nauen/Berlin test site. J Appl Geophys 50:47–65

    Article  Google Scholar 

Download references

Acknowledgements

We want to acknowledge, with thanks, the contributions from C. Owuor to the data acquisition and processing and from Dr. A. Marques da Costa, IGM, for the investigations done in Portugal. This work has also been made possible through the effective collaboration with IRIS Instrument, the ITC's Internal Research Program, the WRS and EXG Divisions contributions and the 1998 information on the Netherlands sites from TNO. We thank David L. Campbell, F. Peter Haeni and Perry G. Olcott for their comments, which helped improve an earlier version of this contribution.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Roy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Roy, J., Lubczynski, M. The magnetic resonance sounding technique and its use for groundwater investigations. Hydrogeology Journal 11, 455–465 (2003). https://doi.org/10.1007/s10040-003-0254-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10040-003-0254-8

Keywords

Navigation