Skip to main content
Log in

A voxel-based clump generation method used for DEM simulations

  • Original Paper
  • Published:
Granular Matter Aims and scope Submit manuscript

Abstract

Using a cluster of pebbles to generate clumps is a common procedure to explore granular particles' micro- or macro-scale mechanical responses in DEM simulations. The struggle is to balance the number of pebbles and the shape accuracy of generated clumps compared to the original particles. A low-cost multi-image-based method is adopted in this paper to extract 3D triangular networks of original particles. A voxel-based clump generation method, namely V-CLUMP, is developed to generate clumps based on triangular networks. The operations, such as gradual discretization, surface cell optimization, and candidate pebble hollowing out, are proposed to improve the accuracy and efficiency of clump generation. The ideal of corner preserving is also adopted, and a novel image-based method to detect corners and ridges of particles or clumps is proposed in this paper. Clumps for four idealized geometrical shapes and five quintessential particles are generated using the V-CLUMP. The parameters, including the number of pebbles, volume, projection area, sphericity, roundness, and roughness, are used to evaluate the performance of the clump generation method proposed in this study. The result shows that the absolute value of the errors for most generated clumps with 30 to 120 pebbles in macro-scale descriptors, i.e., volume, projection area, and sphericity, are less than 6%. A better result of meso- and micro- descriptors, i.e., roundness and roughness, can be obtained by selecting optimum clump generation parameters. The code takes less than one second to a few minutes, within the acceptable limits. However, pebble hollowing out and corner detecting are still time-consuming, and more efficient algorithms are needed to improve the performance of the operations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24

Similar content being viewed by others

References

  1. Liu, G.Y., Xu, W.J., Govender, N., Wilke, D.N.: Simulation of rock fracture process based on GPU-accelerated discrete element method. Powder Technol. 377, 640–656 (2021). https://doi.org/10.1016/j.powtec.2020.09.009

    Article  Google Scholar 

  2. Fang, C.F., Gong, J., Jia, M.T., Nie, Z.H., Li, B., Mohammed, A., Zhao, L.H.: DEM simulation of the shear behaviour of breakable granular materials with various angularities. Adv. Powder Technol. 32(11), 4058–4069 (2021). https://doi.org/10.1016/j.apt.2021.09.009

    Article  Google Scholar 

  3. Nagata, Y., Tsunazawa, Y., Tsukada, K., Yaguchi, Y., Ebisu, Y., Mitsuhashi, K., Tokoro, C.: Effect of the roll stud diameter on the capacity of a high-pressure grinding roll using the discrete element method. Miner. Eng. (2020). https://doi.org/10.1016/j.mineng.2020.106412

    Article  Google Scholar 

  4. Song, Z.Y., Konietzky, H., Herbst, M.: Drawing mechanism of fractured top coal in longwall top coal caving. Int. J. Rock Mech. Min. Sci. (2020). https://doi.org/10.1016/j.ijrmms.2020.104329

    Article  Google Scholar 

  5. Gan, J., Yu, A.: DEM study on the packing density and randomness for packing of ellipsoids. Powder Technol. 361, 424–434 (2020). https://doi.org/10.1016/j.powtec.2019.07.012

    Article  Google Scholar 

  6. Wouterse, A., Luding, S., Philipse, A.P.: On contact numbers in random rod packings. Granul. Matter 11(3), 169–177 (2009). https://doi.org/10.1007/s10035-009-0126-6

    Article  MATH  Google Scholar 

  7. Kou, M., Zhou, H., Wu, S., Shen, Y.: DEM simulation of cubical particle percolation in a packed bed. Powder Technol. 361, 306–314 (2020). https://doi.org/10.1016/j.powtec.2019.08.012

    Article  Google Scholar 

  8. Xu, Z., Yang, J., Ding, Y., Zhao, Y., Li, J., Hu, B., Xia, C.: Packing and void structures of octahedral, dodecahedral and icosahedral granular particles. Granul. Matter 23(4), 88 (2021). https://doi.org/10.1007/s10035-021-01156-9

    Article  Google Scholar 

  9. Yuan, Y., Liu, L.F., Deng, W., Li, S.X.: Random-packing properties of spheropolyhedra. Powder Technol. 351, 186–194 (2019). https://doi.org/10.1016/j.powtec.2019.04.018

    Article  Google Scholar 

  10. Zhao, S.W., Zhang, N., Zhou, X.W., Zhang, L.: Particle shape effects on fabric of granular random packing. Powder Technol. 310, 175–186 (2017). https://doi.org/10.1016/j.powtec.2016.12.094

    Article  Google Scholar 

  11. Zhao, S.W., Zhou, X.W.: Effects of particle asphericity on the macro- and micro-mechanical behaviors of granular assemblies. Granul. Matter (2017). https://doi.org/10.1007/s10035-017-0725-6

    Article  Google Scholar 

  12. Favier, J.F., Abbaspour-Fard, M.H., Kremmer, M., Raji, A.O.: Shape representation of axi-symmetrical, non-spherical particles in discrete element simulation using multi-element model particles. Eng. Comput. 16(4), 467–480 (1999). https://doi.org/10.1108/02644409910271894

    Article  MATH  Google Scholar 

  13. Das, N.: Modeling three-dimensional shape of sand grains using discrete element method, University of South Florida, (2007)

  14. Ferellec, J.F., McDowell, G.R.: A method to model realistic particle shape and inertia in DEM. Granul. Matter 12(5), 459–467 (2010). https://doi.org/10.1007/s10035-010-0205-8

    Article  MATH  Google Scholar 

  15. R. Taghavi: Automatic clump generation based on mid-surface. In: Proceedings, 2nd international FLAC/DEM symposium, Melbourne, (2011)

  16. Haeri, S.: Optimisation of blade type spreaders for powder bed preparation in additive manufacturing using DEM simulations. Powder Technol. 321, 94–104 (2017). https://doi.org/10.1016/j.powtec.2017.08.011

    Article  Google Scholar 

  17. Angelidakis, V., Nadimi, S., Otsubo, M., Utili, S.: CLUMP: A code library to generate universal multi-sphere particles. SoftwareX 15, 100735 (2021). https://doi.org/10.1016/j.softx.2021.100735

    Article  Google Scholar 

  18. Zheng, J., Hryciw, R.D.: An image based clump library for DEM simulations. Granul. Matter (2017). https://doi.org/10.1007/s10035-017-0713-x

    Article  Google Scholar 

  19. Zheng, J., Hryciw, R.D.: A corner preserving algorithm for realistic DEM soil particle generation. Granular Matter 18(4), 84 (2016). https://doi.org/10.1007/s10035-016-0679-0

    Article  Google Scholar 

  20. Zheng, J., He, H., Alimohammadi, H.: Three-dimensional Wadell roundness for particle angularity characterization of granular soils. Acta Geotech. 16(1), 133–149 (2021). https://doi.org/10.1007/s11440-020-01004-9

    Article  Google Scholar 

  21. Laurentini, A.: The visual hull concept for silhouette-based image understanding. IEEE Trans. Pattern Anal. Mach. Intell. 16(2), 150–162 (1994). https://doi.org/10.1109/34.273735

    Article  Google Scholar 

  22. Cheung, K.M., Baker, S., Kanade, T.: Shape-from-silhouette across time part I: theory and algorithms. Int. J. Comput. Vision 62(3), 221–247 (2005). https://doi.org/10.1007/s11263-005-4881-5

    Article  Google Scholar 

  23. Ferellec, J.F., McDowell, G.R.: A simple method to create complex particle shapes for DEM. Geomech. Geoeng. 3(3), 211–216 (2008). https://doi.org/10.1080/17486020802253992

    Article  Google Scholar 

  24. Li, C., Xu, W., Meng, Q.: Multi-sphere approximation of real particles for DEM simulation based on a modified greedy heuristic algorithm. Powder Technol. 286, 478–487 (2015). https://doi.org/10.1016/j.powtec.2015.08.026

    Article  Google Scholar 

  25. Zheng, J., Hryciw, R.D.: Traditional soil particle sphericity, roundness and surface roughness by computational geometry. Geotechnique 65(6), 494–506 (2015). https://doi.org/10.1680/geot.14.P.192

    Article  Google Scholar 

  26. J. Sorokin, ridgefilt(img,L,sigma,alpha), MATLAB Central File Exchange, https://www.mathworks.com/matlabcentral/fileexchange/67019-ridgefilt-img-l-sigma-alpha,Accessed March, 1, 2022

  27. A. K. Ashmawy, V. V. Hoang and B. Sukumaran: Evaluating the influence of particle shape on liquefaction behavior using discrete element modeling. In: The Thirteenth International Offshore and Polar Engineering Conference, May 2003, Honolulu, Hawaii, USA, (2003)

  28. Wadell, H.: Volume, shape, and roundness of rock particles. J. Geol. 40(5), 443–451 (1932). https://doi.org/10.1086/623964

    Article  ADS  Google Scholar 

  29. Wadell, H.: Sphericity and roundness of rock particles. J. Geol. 41(3), 310–331 (1933). https://doi.org/10.1086/624040

    Article  ADS  Google Scholar 

  30. Wadell, H.: Volume, shape, and roundness of quartz particles. J. Geol. 43(3), 250–280 (1935). https://doi.org/10.1086/624298

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This paper is supported by the National Natural Science Foundation of China (Grant No: 51934008, 51674264, 51904305) and the China Scholarship Council (Grant No: 202006430019). The first authors also thank Dr. Vasileios Angelidakis for providing code help.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lianghui Li.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, L., Wang, J., Yang, S. et al. A voxel-based clump generation method used for DEM simulations. Granular Matter 24, 89 (2022). https://doi.org/10.1007/s10035-022-01251-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10035-022-01251-5

Keywords

Navigation