Skip to main content
Log in

The influence of image analysis methodology on the calculation of granular temperature for granular flows

  • Original Paper
  • Published:
Granular Matter Aims and scope Submit manuscript

Abstract

The granular temperature is an index of the level of collisional activity in a granular flow, and increasingly important in the verification of extended kinetic theories. The granular temperature is related to the square of the difference between a particle’s velocity and that of the group mean. Image analysis of high-speed video is the most common method to measure granular temperature in experimental flows and depends on correlation of a search mask or a portion of the original image to the next image frame to determine the particle’s movement. This invariably involves some level of estimation of the location at a resolution finer than the pixels that make up the image. However, errors in determining particle movement at the subpixel level can be shown to have a significant impact on granular temperature identification. We show that taking particle movement to be a chain of displacement vectors provides context to the apparent impulses on the particle. Here we propose two novel methods for determining the granular temperature of experimental flows, namely a novel method of initializing Particle Image Velocimetry (PIV) for granular systems where each search subset is centred on a previously determined particle location to reduce bias, and a method of filtering the apparent impulses on a particle on a frequency basis. We term these methods Guided-PIV and Impulse Frequency Filtering (IFF), respectively. In a verification exercise using synthetically generated images, we show Guided-PIV to produce substantially more accurate results than ordinary applications of PIV. The IFF method is shown to greatly reduce the influence of analyzed framerate on granular temperature results. Our results demonstrate practical improvements for granular temperature identification from image analysis, throughout a range of experimental image quality levels, and we anticipate that these improvements will enable experimental assessment towards verification of theorized models of collisional-frictional granular flows.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Armanini, A.: Granular flows driven by gravity. J. Hydraul. Res. 51(2), 111 (2013). https://doi.org/10.1080/00221686.2013.788080

    Article  Google Scholar 

  2. Bagnold, R.: Experiments on a gravity-free dispersion of large solid spheres in a Newtonian fluid under shear. Proc. R. Soc. London Ser. A Math. Phys. Sci. 225(1160), 49 (1954). https://doi.org/10.1098/rspa.1954.0186

    Article  ADS  Google Scholar 

  3. Ogawa, S.: In: Cowin, S., Satake, M., (eds) Proceedings of the US-Japan Seminar on Continuum-Mechanical and Statistical Approaches in the Mechanics of Granular Materials, pp. 208–217. Gakujutsu Bunken Fukyukai, Tokyo (1978)

  4. Lun, C.K.K., Savage, S.B.: The effects of an impact velocity dependent coefficient of restitution on stresses developed by sheared granular materials. Acta Mech. 63(1–4), 15 (1986). https://doi.org/10.1007/bf01182538

    Article  MATH  Google Scholar 

  5. Jenkins, J.T.: Dense inclined flows of inelastic spheres. Granul. Matter 10(1), 47 (2007). https://doi.org/10.1007/s10035-007-0057-z

    Article  MATH  Google Scholar 

  6. Haff, P.K.: Grain flow as a fluid-mechanical phenomenon. J. Fluid Mech. 134(1), 401 (1983). https://doi.org/10.1017/s0022112083003419

    Article  ADS  MATH  Google Scholar 

  7. Capart, H., Young, D.L., Zech, Y.: Voronoï imaging methods for the measurement of granular flows. Exp. Fluids 32(1), 121 (2002). https://doi.org/10.1007/s003480200013

    Article  Google Scholar 

  8. Reis, P.M., Ingale, R.A., Shattuck, M.D.: Forcing independent velocity distributions in an experimental granular fluid. Phys. Rev. E 75, 5 (2007). https://doi.org/10.1103/physreve.75.051311

    Article  Google Scholar 

  9. Hsiau, S., Lu, L., Tai, C.: Experimental investigations of granular temperature in vertical vibrated beds. Powder Technol. 182(2), 202 (2008). https://doi.org/10.1016/j.powtec.2007.09.015

    Article  Google Scholar 

  10. Seguin, A., Bertho, Y., Martinez, F., Crassous, J., Gondret, P.: Experimental velocity fields and forces for a cylinder penetrating into a granular medium. Phys. Rev. E 87, 1 (2013). https://doi.org/10.1103/physreve.87.012201

    Article  Google Scholar 

  11. Sanvitale, N., Bowman, E.T.: Using PIV to measure granular temperature in saturated unsteady polydisperse granular flows. Granul. Matter 18(3), 57 (2016). https://doi.org/10.1007/s10035-016-0620-6

    Article  Google Scholar 

  12. Maranic, Z., Guillard, F., Baker, J., Einav, I., Marks, B.: A granular thermometer. Granul. Matter 23, 2 (2021). https://doi.org/10.1007/s10035-020-01081-3

    Article  Google Scholar 

  13. Gollin, D., Brevis, W., Bowman, E.T., Shepley, P.: Performance of PIV and PTV for granular flow measurements. Granul. Matter 19, 3 (2017). https://doi.org/10.1007/s10035-017-0730-9

    Article  Google Scholar 

  14. Murray, C.A., Hoult, N.A., Take, W.A.: Dynamic measurements using digital image correlation. Int. J. Phys. Model. Geotech. 17(1), 41 (2017). https://doi.org/10.1680/jphmg.15.00055

    Article  Google Scholar 

  15. Goldhirsch, I.: Introduction to granular temperature. Powder Technol. 182(2), 130 (2008). https://doi.org/10.1016/j.powtec.2007.12.002

    Article  Google Scholar 

  16. Sarno, L., Carleo, L., Papa, M.N., Villani, P.: Experimental investigation on the effects of the fixed boundaries in channelized dry granular flows. Rock Mech. Rock Eng. 51(1), 203 (2017). https://doi.org/10.1007/s00603-017-1311-2

    Article  ADS  Google Scholar 

  17. Jesuthasan, N., Baliga, B.R., Savage, S.B.: Use of particle tracking velocimetry for measurements of granular flows: review and application. KONA Powder Part. J. 24, 15 (2006). https://doi.org/10.14356/kona.2006006

    Article  Google Scholar 

  18. Takehara, K., Etoh, T.: A study on particle identification in PTV particle mask correlation method. J. Vis. 1(3), 313 (1999). https://doi.org/10.1007/bf03181412

    Article  Google Scholar 

  19. Perez, C.E.E.: Analysis, Comparison and Modification of Various Particle Image Velocimetry (PIV) Algorithms, Master’s thesis. Texas A&M University, Texas (2004)

    Google Scholar 

  20. Brevis, W., Niño, Y., Jirka, G.H.: Integrating cross-correlation and relaxation algorithms for particle tracking velocimetry. Exp. Fluids 50(1), 135 (2010). https://doi.org/10.1007/s00348-010-0907-z

    Article  Google Scholar 

  21. Thielicke, W., Stamhuis, E.J.: PIVlab - towards user-friendly, affordable and accurate digital particle image velocimetry in MATLAB. J. Open Res Softw. (2014). https://doi.org/10.5334/jors.bl

    Article  Google Scholar 

  22. White, D.J., Take, W.A., Bolton, M.D.: Soil deformation measurement using particle image velocimetry (PIV) and photogrammetry. Géotechnique 53(7), 619 (2003). https://doi.org/10.1680/geot.2003.53.7.619

    Article  Google Scholar 

  23. Adrian, R.J., Westerweel, J.: Particle image velocimetry. Cambridge University Press, Cambridge (2011)

    Google Scholar 

  24. Keane, R.D., Adrian, R.J.: Theory of cross-correlation analysis of PIV images. Appl. Sci. Res. 49(3), 191 (1992). https://doi.org/10.1007/bf00384623

    Article  Google Scholar 

  25. Reynolds, G.K., Nilpawar, A.M., Salman, A.D., Hounslow, M.J.: Direct measurement of surface granular temperature in a high shear granulator. Powder Technol. 182(2), 211 (2008). https://doi.org/10.1016/j.powtec.2007.11.034

    Article  Google Scholar 

  26. Sanvitale, N., Bowman, E.T.: Visualization of dominant stress-transfer mechanisms in experimental debris flows of different particle-size distribution. Can. Geotech. J. 54(2), 258 (2017). https://doi.org/10.1139/cgj-2015-0532

    Article  Google Scholar 

  27. Sarno, L., Carravetta, A., Tai, Y.C., Martino, R., Papa, M.N., Kuo, C.Y.: Measuring the velocity fields of granular flows – employment of a multi-pass two-dimensional particle image velocimetry (2D-PIV) approach. Adv. Powder Technol. 29(12), 3107 (2018). https://doi.org/10.1016/j.apt.2018.08.014

    Article  Google Scholar 

  28. Hart, D.P.: Super-resolution PIV by recursive local-correlation. J. Vis. 3(2), 187 (2000). https://doi.org/10.1007/bf03182411

    Article  Google Scholar 

  29. White, D.J., Take, W.A.: GeoPIV: particle image velocimetry (PIV) software for use in geotechnical testing. Technical Report. Cambridge University Department of Engineering, Cambridge, UK (2002)

    Google Scholar 

  30. Stanier, S.A., Blaber, J., Take, W.A., White, D.J.: Improved image-based deformation measurement for geotechnical applications. Can. Geotech. J. 53(5), 727 (2016). https://doi.org/10.1139/cgj-2015-0253

    Article  Google Scholar 

  31. Cowen, E.A., Monismith, S.G.: A hybrid digital particle tracking velocimetry technique. Exp. Fluids 22(3), 199 (1997). https://doi.org/10.1007/s003480050038

    Article  Google Scholar 

  32. Weinhart, T., Orefice, L., Post, M., van Schrojenstein Lantman, M.P., Denissen, I.F.C., Tunuguntla, D.R., Tsang, J.M.F., Cheng, H., Shaheen, M.Y., Shi, H., Rapino, P., Grannonio, E., Losacco, N., Barbosa, J., Jing, L., Naranjo, J.E.A., Roy, S., den Otter, W.K., Thornton, A.R.: Fast, flexible particle simulations — an introduction to MercuryDPM. Comput. Phys. Commun. 249, 107129 (2020). https://doi.org/10.1016/j.cpc.2019.107129

    Article  MathSciNet  Google Scholar 

  33. MercuryDPM. http://www.mercurydpm.org

  34. Gollin, D., Berzi, D., Bowman, E.T.: Extended kinetic theory applied to inclined granular flows: role of boundaries. Granul. Matter 19, 3 (2017). https://doi.org/10.1007/s10035-017-0738-1

    Article  Google Scholar 

  35. Stanier, S., Dijkstra, J., Leśniewska, D., Hambleton, J., White, D., Wood, D.M.: Vermiculate artefacts in image analysis of granular materials. Comput. Geotech. 72, 100 (2016). https://doi.org/10.1016/j.compgeo.2015.11.013

    Article  Google Scholar 

  36. Gollin, D.: An Investigation on the Collisional Behaviour of Granular Flows. University of Sheffield (2017). (Ph.D. thesis)

  37. Sanvitale, N., Bowman, E.T.: Internal imaging of saturated granular free-surface flows. Int. J. Phys. Model. Geotech. 12(4), 129 (2012). https://doi.org/10.1680/ijpmg.12.00002

    Article  Google Scholar 

Download references

Acknowledgements

This project is the result of a Leverhulme Trust International Network Grant (#IN-2016-041) “The Rosetta Stone Network: Physical testing towards a common understanding of debris flows”. Funding for the first author was provided by a NSERC Discovery Grant to the last author. Funding for the second author was courtesy of the Engineering and Physical Sciences Research Council, UK via a Doctoral Training Award held at the University of Sheffield.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. A. Take.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 86 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Taylor-Noonan, A.M., Gollin, D., Bowman, E.T. et al. The influence of image analysis methodology on the calculation of granular temperature for granular flows. Granular Matter 23, 96 (2021). https://doi.org/10.1007/s10035-021-01153-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10035-021-01153-y

Keywords

Navigation