Skip to main content
Log in

Numerical simulation of wetting-induced collapse in partially saturated granular soils

  • Original Paper
  • Published:
Granular Matter Aims and scope Submit manuscript

Abstract

Wetting collapse in sand is examined by means of experiments under X-ray tomography and pore-scale coupled DEM simulations. Two different deformation patterns are observed depending on the average particle size: vertical shrinkage for coarser sand, isotropic shrinkage for the finer one. A series of numerical tests is performed to highlight the role of a dimensionless “column number” in the transition from one deformation mode to the other. The column number reflects the intensity of the gravitational effects compared to that of capillarity effects. It is found that the vertical shrinkage appears when this number is large enough (gravitational forces dominate). In all cases the imbibition pattern is rather heterogeneous as water invades the narrow pores first. It leads to a very heterogeneous deformation process at the mesoscale, with local densification and creation of cavities occurring concurrently. This phenomenon reveals the dual contribution of capillary forces, which are simultaneously driving forces for some internal deformation processes and resisting forces for others.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23

Similar content being viewed by others

References

  1. Barden, L., McGown, A., Collins, K.: The collapse mechanism in partly saturated soil. Eng. Geol. 7(1), 49–60 (1973)

    Article  Google Scholar 

  2. Lawton, E.C., Fragaszy, R.J., Hetherington, M.D.: Review of wetting-induced collapse in compacted soil. J. Geotech. Eng. 118(9), 1376–1394 (1992)

    Article  Google Scholar 

  3. Tadepalli, R., Rahardjo, H., Fredlund, D.G.: Measurements of matric suction and volume changes during inundation of collapsible soil. Geotech. Test. J. 15(2), 115–122 (1992)

    Article  Google Scholar 

  4. Phien-Wej, N., Pientong, T., Balasubramaniam, A.: Collapse and strength characteristics of loess in thailand. Eng. Geol. 32(1–2), 59–72 (1992)

    Article  Google Scholar 

  5. Rao, S.M., Sridharan, A., Ramanath, K.P.: Collapse behavior of an artificially cemented clayey silt. Geotech. Test. J. 18(3), 334–341 (1995)

    Article  Google Scholar 

  6. Sun, D., Sheng, D., Xu, Y.: Collapse behaviour of unsaturated compacted soil with different initial densities. Can. Geotech. J. 44(6), 673–686 (2007)

    Article  Google Scholar 

  7. Zorlu, K., Kasapoglu, K.: Determination of geomechanical properties and collapse potential of a caliche by in situ and laboratory tests. Environ. Geol. 56(7), 1449–1459 (2009)

    Article  ADS  Google Scholar 

  8. Sadek, S., Iskander, M.G., Liu, J.: Accuracy of digital image correlation for measuring deformations in transparent media. J. Comput. Civ. Eng. 17(2), 88–96 (2003)

    Article  Google Scholar 

  9. Zhang, Y.D., Tan, T.S., Leung, C.F.: Application of particle imaging velocimetry (piv) in centrifuge testing of uniform clay. Int. J. Phys. Model. Geotech. 5(1), 15–26 (2005)

    Google Scholar 

  10. Sevi, A.F., Ge, L., Take, W.A.: A large-scale triaxial apparatus for prototype railroad ballast testing. Geotech. Test. J. 32(4), 297–304 (2009)

    Google Scholar 

  11. Moscariello, M., Cuomo, S., Salager, S.: Capillary collapse of loose pyroclastic unsaturated sands characterized at grain scale. Acta Geotech. 13, 117–133 (2017)

    Article  Google Scholar 

  12. Fredlund, D., Morgenstern, N.: Constitutive relations for volume change in unsaturated soils. Canadian Geotech. J. 13(3), 261–276 (1976)

    Article  Google Scholar 

  13. Alonso, E.E., Gens, A., Josa, A.: A constitutive model for partially saturated soils. Géotechnique 40(3), 405–430 (1990)

    Article  Google Scholar 

  14. Gallipoli, D., Gens, A., Sharma, R., Vaunat, J.: An elasto-plastic model for unsaturated soil incorporating the effects of suction and degree of saturation on mechanical behaviour. Géotechnique 53(1), 123–136 (2003)

    Article  Google Scholar 

  15. Lu, N., Godt, J.W., Wu, D.T.: A closed-form equation for effective stress in unsaturated soil. Water Resour. Res. 46(5), 1–14 (2010)

    Article  Google Scholar 

  16. Liu, S., Sun, D.: Simulating the collapse of unsaturated soil by dem. Int. J. Numer. Anal. Methods Geomech. 26(6), 633–646 (2002)

    Article  MATH  Google Scholar 

  17. Kim, B., Park, S., Kato, S.: Dem simulation of collapse behaviours of unsaturated granular materials under general stress states. Comput. Geotech. 42, 52–61 (2012)

    Article  Google Scholar 

  18. Jiang, M., Li, T., Hu, H., Thornton, C.: Dem analyses of one-dimensional compression and collapse behaviour of unsaturated structural loess. Comput. Geotech. 60, 47–60 (2014)

    Article  Google Scholar 

  19. Scholtès, L., Chareyre, B., Nicot, F., Darve, F.: Micromechanics of granular materials with capillary effects. Int. J. Eng. Sci. 47(1), 64–75 (2009). https://doi.org/10.1016/j.ijengsci.2008.07.002

    Article  MathSciNet  MATH  Google Scholar 

  20. Mani, R., Kadau, D., Herrmann, H.J.: Liquid migration in sheared unsaturated granular media. Granul. Matter 15(4), 447–454 (2013)

    Article  Google Scholar 

  21. Yuan, C., Chareyre, B.: A pore-scale method for hydromechanical coupling in deformable granular media. Comput. Methods Appl. Mech. Eng. 318, 1066–1079 (2017). https://doi.org/10.1016/j.cma.2017.02.024

    Article  ADS  MathSciNet  Google Scholar 

  22. Yuan, C., Chareyre, B., Darve, F.: Pore-scale simulations of drainage in granular materials: Finite size effects and the representative elementary volume. Adv. Water Resour. 95, 109–124 (2016). https://doi.org/10.1016/j.advwatres.2015.11.018

    Article  ADS  Google Scholar 

  23. Moscariello, M., Cuomo, S.: Wetting test and X-ray computed tomography of volcanic unsaturated sands. Géotech. Lett. 1–8 (2019). https://doi.org/10.1680/jgele.18.00200

    Google Scholar 

  24. Moscariello, M., Cuomo, S., Salager, S.: Wetting test and X-ray computed tomography of an unsaturated sand. In: Proceedings of the 7th International Conference on Unsaturated Soils, Hong Kong, 3–5 August 2018, vol. 2, pp. 771–776 (2018)

  25. Chareyre, B., Cortis, A., Catalano, E., Barthélemy, E.: Pore-scale modeling of viscous flow and induced forces in dense sphere packings. Transp. Porous Med. 92(2), 473–493 (2012). https://doi.org/10.1007/s11242-011-9915-6

    Article  MathSciNet  Google Scholar 

  26. Sweijen, T., Nikooee, E., Hassanizadeh, S.M., Chareyre, B.: The effects of swelling and porosity change on capillarity: Dem coupled with a pore-unit assembly method. Transp. Porous Med. 113(1), 207–226 (2016)

    Article  MathSciNet  Google Scholar 

  27. Haines, W. B.: Studies in the physical properties of soil. v. the hysteresis effect in capillary properties, and the modes of moisture distribution associated therewith. J. Agric. Sci. 20 (1930) 97–116. https://doi.org/10.1017/S002185960008864X.

    Article  Google Scholar 

  28. Mackay, A.: To find the largest sphere which can be inscribed between four others. Acta Crystallogr. Sect. A Cryst. Phys. Diffr. Theor. Gen. Crystallogr. 29(3), 308–309 (1973)

    Article  ADS  Google Scholar 

  29. Chandler, R., Koplik, J., Lerman, K., Willemsen, J.F.: Capillary displacement and percolation in porous media. J. Fluid Mech. 119, 249–267 (1982). https://doi.org/10.1017/S0022112082001335

    Article  ADS  MATH  Google Scholar 

  30. Wilkinson, D., Willemsen, J.F.: Invasion percolation: a new form of percolation theory. J. Phys. A Math. Gen. 16(14), 3365 (1983). https://doi.org/10.1088/0305-4470/16/14/028

    Article  ADS  MathSciNet  Google Scholar 

  31. Scholtès, L., Chareyre, B., Nicot, F., Darve, F.: Discrete modelling of capillary mechanisms in multi-phase granular media. Comput. Model. Eng. Sci. 52(3), 297–318 (2009)

    MATH  Google Scholar 

  32. Hager, W.H.: Wilfrid noel bond and the bond number. J. Hydraul. Res. 50(1), 3–9 (2012)

    Article  Google Scholar 

  33. Clift, R., Grace, J.R., Weber, M.E.: Bubbles, Drops, and Particles. Academic Press, Cambridge (1978)

    Google Scholar 

  34. Khamseh, S., Roux, J.-N., Chevoir, F.: Flow of wet granular materials: a numerical study. Phys. Rev. E 92(2), 022201 (2015)

    Article  ADS  Google Scholar 

  35. Chareyre, B.: Comment on“flow of wet granular materials: a numerical study”. Phys. Rev. E 96(1), 016901 (2017)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This research activity was developed in the framework of different projects: (1) 2014–2015 Erasmus + European Project, (2) Progetto FARB 2015 (Cod. 154348) “Sperimentazione di laboratorio e modellazione costitutiva di terreni parzialmente saturi”, (3) Progetto FARB 2016 (Cod. 163001) “Analisi multi-scalare del comportamento meccanico di terreni non saturi”, (4) 2015–2016 Galileo Project Campus France “Soil mechanical behaviour from grain to specimen scale laboratory testing: towards new sustainable mitigation works against flow-like landslides and similar phenomena related to climate change” Grant No. G15-110. The Chao Yuan was partly funded by Labex TEC21 from the University of Grenoble-Alpes.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sabatino Cuomo.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yuan, C., Moscariello, M., Cuomo, S. et al. Numerical simulation of wetting-induced collapse in partially saturated granular soils. Granular Matter 21, 64 (2019). https://doi.org/10.1007/s10035-019-0921-7

Download citation

  • Received:

  • Published:

  • DOI: https://doi.org/10.1007/s10035-019-0921-7

Keywords

Navigation