Skip to main content
Log in

Quasi-static collapse of two-dimensional granular columns: insight from continuum modelling

  • Original Paper
  • Published:
Granular Matter Aims and scope Submit manuscript

Abstract

We investigate numerically the mechanism governing the quasi-static collapse of two-dimensional granular columns using a recently proposed continuum approach, the particle finite element method (PFEM), which inherits both the solid mathematical foundation of the traditional finite element method and the flexibility of particle methods in simulating ultra-large deformation problems. The typical collapse patterns of granular columns are reproduced in the PFEM simulation and the physical mechanism behind the collapse phenomenon is provided. The collapse processes obtained from the PFEM simulation are compared to experimental observations and discrete element modeling, where a satisfactory agreement is achieved. The effects of the macro density and friction angle of the granular matter, as well as the roughness of the wall surfaces on the quasi-static collapse, are also investigated in this paper. Furthermore, our simulations reveal new quasi-static collapse patterns, as supplements to the ones already observed in the experimental tests, due to the change of the roughness of the basal surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Forterre, Y., Pouliquen, O.: Granular Media Between Fluid and Solid. Cambridge Press, Cambridge (2013)

    MATH  Google Scholar 

  2. Lube, G., Huppert, H.E., Sparks, R.S.J., Freundt, A.: Collapse of two-dimensional granular columns. Phys. Rev. E 72, 041301 (2005)

    Article  ADS  Google Scholar 

  3. Lajeunesse, E., Monnier, J.B., Homsy, G.M.: Granular slumping on a horizontal surface. Phys. Fluids 17, 103302 (2005)

    Article  ADS  MATH  Google Scholar 

  4. Mériaux, C.: Two dimensional fall of granular columns controlled by slow horizontal withdrawal of a retaining wall. Phys. Fluids 18, 093301 (2006)

    Article  ADS  Google Scholar 

  5. Lube, G., Huppert, H.E., Sparks, R.S.J., Hallworth, M.A.: Axisymmetric collapse of granular columns. J. Fluid Mech. 508, 175–199 (2004)

    Article  ADS  MATH  Google Scholar 

  6. Lajeunesse, E., Mangeney-Castelneau, A., Vilotte, J.P.: Spreading of a granular mass on a horizontal plane. Phys. Fluids 16, 2371–2381 (2004)

    Article  ADS  MATH  Google Scholar 

  7. Balmforth, N.J., Kerswell, R.R.: Granular collapse in two dimensions. J. Fluid Mech. 538, 399–428 (2005)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. Lube, G., Huppert, H.E., Sparks, R.S.J., Freundt, A.: Static and flowing regions in granular collapses down channels. Phys. Fluids 19(4), 043301 (2007)

    Article  ADS  MATH  Google Scholar 

  9. Topin, V., Monerie, Y., Perales, F., Radjaï, F.: Collapse dynamics and runout of dense granular materials in a fluid. Phys. Rev. Lett. 109, 188001 (2012)

    Article  ADS  Google Scholar 

  10. Rondon, L., Pouliquen, O., Aussillous, P.: Granular collapse in a fluid: role of the initial volume fraction. Phys. Fluids 23, 073301 (2011)

    Article  ADS  Google Scholar 

  11. Maeno, F., Hogg, A.J., Sparks, R.S.J., Matson, G.P.: Unconfined slumping of a granular mass on a slope. Phys. Fluids 25(2), 023302 (2013)

    Article  ADS  Google Scholar 

  12. Thompson, E.L., Huppert, H.E.: Granular column collapses: further experimental results. J. Fluid Mech. 575, 177–186 (2007)

    Article  ADS  MATH  Google Scholar 

  13. Cundall, P.A., Strack, O.D.L.: A discrete numerical model for granular assemblies. Geotechnique 29(1), 47–65 (1979)

    Article  Google Scholar 

  14. Staron, L., Hinch, E.J.: Study of the collapse of granular columns using two-dimensional discrete-grain simulation. J. Fluid Mech. 545, 1–27 (2005)

    Article  ADS  MATH  Google Scholar 

  15. Zenit, R.: Computer simulations of the collapse of a granular column. Phys. Fluids 17, 031730 (2005)

    Article  MATH  Google Scholar 

  16. Lacaze, L., Philips, J.C., Kerswell, R.R.: Planar collapse of a granular column: experiments and discrete element simulations. Phys. Fluids 20, 063302 (2008)

    Article  ADS  MATH  Google Scholar 

  17. Huang, J., da Silva, M.V., Krabbenhoft, K.: Three-dimensional granular contact dynamics with rolling resistance. Comput. Geotech. 49, 289–298 (2013)

    Article  Google Scholar 

  18. Kermani, E., Qiu, T., Li, T.: Simulation of collapse of granular columns using the discrete element method. Int. J. Geomech. 15(6), 04015004 (2015)

    Article  Google Scholar 

  19. Staron, L., Hinch, E.J.: The spreading of a granular mass: role of grain properties and initial conditions. Granul. Matter 9, 205–217 (2007)

    Article  MATH  Google Scholar 

  20. Lim, K.-W., Krabbenhoft, K., Andrade, J.E.: A contact dynamics approach to the granular element method. Comput. Methods Appl. Mech. Eng. 268, 557–573 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  21. Zienkiewicz, O., Taylor, R., Zhu, J.: The Finite Element Method: Its Basis and Fundamentals, 2nd edn. Butterworth-Heinemann, London (2013)

    MATH  Google Scholar 

  22. Chen, W., Qiu, T., ASCE, M.: Numerical simulations for large deformation of granular materials using smoothed particle hydrodynamics method. Int. J. Geomech. 12(2), 127–135 (2012)

    Article  Google Scholar 

  23. Holsapple, K.A.: Modeling granular material flows: the angle of repose, fluidization and the cliff collapse problem. Planet. Space Sci. 82–83, 11–26 (2013)

    Article  Google Scholar 

  24. Mast, C., Arduino, P., Mackenzie-Helnwein, P., Miller, G.: Simulating granular column collapse using the material point method. Acta Geotech. 10(1), 101–116 (2015)

    Article  Google Scholar 

  25. Cante, J.C., Oliver, X., Weyler, R., Cafiero, M., Davalos, C.: Particle finite element method applied to granular material flow. In: International Conference on Particle-Based Methods, Barcelona, Spain (2009)

  26. Zhang, X., Krabbenhoft, K., Pedroso, D.M., Lyamin, A.V., Sheng, D., da Silva, M.V., Wang, D.: Particle finite element analysis of large deformation and granular flow problems. Comput. Geotech. 54, 133–142 (2013)

    Article  Google Scholar 

  27. Cante, J., Davalos, C., Hernandez, J.A., Oliver, J., Jonsen, P., Gustafsson, G., Haggblad, H.A.: Pfem-based modeling of industrial granular flows. Comput. Part. Mech. 1(1), 47–70 (2014)

    Article  Google Scholar 

  28. Zhang, X., Krabbenhoft, K., Sheng, D., Li, W.: Numerical simulation of a flow-like landslide using the particle finite element method. Comput. Mech. 55(1), 167–177 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  29. Zhang, X., Krabbenhoft, K., Sheng, D.: Particle finite element analysis of the granular column collapse problem. Granul. Matter 16(4), 609–619 (2014)

    Article  Google Scholar 

  30. Davalos, C., Cante, J., Hernandez, J., Oliver, J.: On the numerical modeling of granular material flows via the particle finite element method (PFEM). Int. J. Solids Struct. 71, 99–125 (2015)

    Article  Google Scholar 

  31. Becker, P., Idelsohn, S.R., Oñate, E.: A unified monolithic approach for multi-fluid flows and fluid-structure interaction using the particle finite element method with fixed mesh. Comput. Mech. 55(6), 1091–1104 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  32. Oñate, E., Franci, A., Carbonell, J.M.: A particle finite element method for analysis of industrial forming processes. Comput. Mech. 54(1), 85–107 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  33. Salazar, F., Irazabal, J., Larese, A., Oñate, E.: Numerical modelling of landslide-generated waves with the particle finite element method (PFEM) and a non-newtonian flow model. Int. J. Numer. Anal. Methods Geomech. 40(6), 809–826 (2015)

  34. Zhang, X., Sheng, D., Kouretzis, G.P., Krabbenhoft, K., Sloan, S.W.: Numerical investigation of the cylinder movement in granular matter. Phys. Rev. E 91, 022204 (2015)

    Article  ADS  Google Scholar 

  35. Owen, P.J., Cleary, P.W., Meriaux, C.: Quasi-static fall of planar granular columns: comparison of 2D and 3D discrete element modelling with laboratory experiments. Geomech. Geoeng.: Int. J. 4, 55–77 (2009)

    Article  Google Scholar 

  36. Nedderman, R.M.: Statics and Kinematic of Granular Materials. Cambridge Press, Cambridge (1992)

    Book  Google Scholar 

  37. Alizadeh, F., Goldfarb, D.: Second-order cone programming. Math. Program. 95(1), 3–51 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  38. Andersen, E.D., Roos, C., Terlaky, T.: On implementing a primal-dual interior-point method for conic quadratic optimization. Math. Program. 95, 249–277 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  39. Wriggers, P.: Computational Contact Mechanics. Springer, Berlin (2006)

    Book  MATH  Google Scholar 

  40. Zhang, X.: Particle Finite Element Method in Geomechanics. PhD thesis, School of Engineering, University of Newcastle, Australia (2014)

  41. Chen, W., Qiu, T., ASCE, M.: Numerical simulations for large deformation of granular materials using smoothed particle hydrodynamics method. Int. J. Geomech. 12, 127–135 (2011)

    Article  Google Scholar 

  42. Lemiale, V., Mhlhaus, H.B., Meriaux, C., Moresi, L., Hodkinson, L.: Rate effects in dense granular materials: linear stability analysis and the fall of granular columns. Int. J. Numer. Anal. Methods Geomech. 35(2), 293–308 (2011)

    Article  MATH  Google Scholar 

  43. Krabbenhoft, K., Lyamin, A.V., Sloan, S.W.: Formulation and solution of some plasticity problems as conic programs. Int. J. Solids Struct. 44, 1533–1549 (2007)

  44. Zhang, H., Li, J., Pan, S.: New second-order cone linear complementarity formulation and semi-smooth newton algorithm for finite element analysis of 3D frictional contact problem. Comput. Methods Appl. Mech. Eng. 200(14), 77–88 (2011)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  45. Lotfian, Z., Sivaselvan, M.: A projected newton algorithm for the dual convex program of elastoplasticity. Int. J. Numer. Methods Eng. 97(12), 903–936 (2014)

    Article  MathSciNet  Google Scholar 

  46. Zhang, X., Sheng, D., Sloan, S.W., Krabbenhoft, K.: Second-order cone programming formulation for consolidation analysis of saturated porous media. Comput. Mech. (2016). doi:10.1007/s00466-016-1280-4

  47. Krabbenhoft, K., Lyamin, A.V., Sloan, S.W., Wriggers, P.: An interior-point method for elastoplasticity. Int. J. Numer. Methods Eng. 69, 592–626 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  48. Souloumiac, P., Krabbenhoft, K., Leroy, Y.M., Maillot, B.: Failure in accretionary wedges with the maximum stregth theorem: numerical algorithm and 2D validation. Comput. Geosci. 14(4), 793–811 (2010)

  49. Mary, B., Maillot, B., Leroy, Y.: Deterministic chaos in frictional wedges revealed by convergence analysis. Int. J. Numer. Anal. Methods Geomech. 37(17), 3036–3051 (2013)

    Article  Google Scholar 

  50. Stuart, A.M., Peplow, A.T.: The dynamics of the theta method. SIAM J. Sci. Stat. Comput. 12(6), 1351–1372 (1991)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

The authors wish to acknowledge the support of the Australian Research Council Centre of Excellence for Geotechnical Science and Engineering and Australian Research Council’s Discovery Projects funding scheme (Project Number DP150104257). The work was performed in the Department of Civil Engineering at the University of Newcastle, Australia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xue Zhang.

Appendix

Appendix

1.1 Time discretisation

The momentum conservation equations (1) can be discretised using \(\theta \)-method [50] as:

$$\begin{aligned}&{\varvec{\nabla }}^\textsf {{\tiny T}}[ \theta _1{\varvec{\sigma }}_{n+1} + (1-\theta _1){\varvec{\sigma }}_n] + {\varvec{b}} = \rho \displaystyle \frac{{\varvec{v}}_{n+1}-{\varvec{v}}_n}{\varDelta t}, \end{aligned}$$
(10)
$$\begin{aligned}&\theta _2{\varvec{v}}_{n+1} + (1-\theta _2){{\varvec{v}}_n} = \displaystyle \frac{{\varvec{u}}_{n+1}-{\varvec{u}}_n}{\varDelta t}, \end{aligned}$$
(11)

where \({\varvec{v}}\) are velocities, subscripts n and \(n+1\) refer to the known and new, unknown states, and \(\varDelta t=t_{n+1}-t_n\) is the time step. Rearranging the above equations leads to

$$\begin{aligned}&{\varvec{\nabla }}^\textsf {{\tiny T}}{\varvec{\sigma }}_{n+1} + \tilde{\varvec{b}} = \tilde{\rho }\frac{\varDelta {\varvec{u}}}{\varDelta t^2}, \end{aligned}$$
(12)
$$\begin{aligned}&{\varvec{v}}_{n+1} = \displaystyle \frac{1}{\theta _2}\left[ \frac{\varDelta {\varvec{u}}}{\varDelta t} - (1-\theta _2){\varvec{v}}_n\right] , \end{aligned}$$
(13)

where \(\varDelta {\varvec{u}} = {\varvec{u}}_{n+1}-{\varvec{u}}_n\) and

$$\begin{aligned} \tilde{\rho }= & {} \displaystyle \frac{\rho }{\theta _1\theta _2}, \end{aligned}$$
(14)
$$\begin{aligned} \tilde{\varvec{b}}= & {} \displaystyle \frac{1}{\theta _1}{\varvec{b}} + \tilde{\rho }\displaystyle \frac{{\varvec{v}}_n}{\varDelta t} + \displaystyle \frac{1-\theta _1}{\theta _1}{\varvec{\nabla }}^\textsf {{\tiny T}}\varvec{\sigma }_n, \end{aligned}$$
(15)

The natural boundary conditions (6) are approximated in an analogous manner leading to

$$\begin{aligned} \varvec{N}^\textsf {{\tiny T}}{\varvec{\sigma }}_{n+1} = \tilde{\varvec{t}},\,\text {on}\,S, \end{aligned}$$
(16)

where

$$\begin{aligned} \tilde{\varvec{t}} = \frac{1}{\theta _1}{\varvec{t}} - \frac{1-\theta _1}{\theta _1}{\varvec{N}}^\textsf {{\tiny T}} {\varvec{\sigma }}_n. \end{aligned}$$
(17)

Following [26], the above problem can be stated in terms of a min-max problem:

$$\begin{aligned} \begin{array}{lcl} \underset{\varDelta \varvec{u}}{\text {min}}~~\underset{(\varvec{\sigma },\varvec{r})_{n+1}}{\text {max~~}} &{}~&{} \langle \varvec{\sigma }_{n+1},\varvec{\nabla }(\varDelta \varvec{u})\rangle _V - \langle \tilde{\varvec{b}},\varDelta {\varvec{u}} \rangle _V - \langle \tilde{\varvec{t}},\varDelta {\varvec{u}}\rangle _S \\ &{}~&{} -\frac{1}{2}\varDelta t^2\langle {\varvec{r}}_{n+1},{\tilde{\rho }}{}^{-1}{\varvec{r}}_{n+1}\rangle _V + \langle {\varvec{r}}_{n+1},\varDelta {\varvec{u}}\rangle _V \\ \text {subject to} &{}~&{}F({\varvec{\sigma }}_{n+1}) \le 0 \end{array} \end{aligned}$$
(18)

on the basis of the Hellinger-Reissner variational principle. In above, \({\varvec{r}}_{n+1}\) are a set of variables interpreted as dynamic forces [26], and the notation

$$\begin{aligned} \langle {\varvec{x}},{\varvec{y}}\rangle _A = \int _A{\varvec{x}}^\textsf {{\tiny T}}\varvec{y}\,\text {d} A \end{aligned}$$
(19)

is utilised. The equivalence between the optimisation problem (18) and the governing equations at hand is established by demonstrating that the Euler-Lagrange equations associated with (18) indeed reproduce the governing equations [26].

1.2 Spatial discretisation

Using the standard finite element notation, the following approximations

$$\begin{aligned}&{\varvec{\sigma }}(\varvec{x}) \approx {\varvec{N}}_\sigma \hat{\varvec{\sigma }}, \end{aligned}$$
(20)
$$\begin{aligned}&{\varvec{r}}({\varvec{x}}) \approx \varvec{N}_r\hat{\varvec{r}}, \end{aligned}$$
(21)
$$\begin{aligned}&{\varvec{u}}({\varvec{x}}) \approx \varvec{N}_u\hat{\varvec{u}}, \end{aligned}$$
(22)
$$\begin{aligned}&{\varvec{\nabla }} {\varvec{u}} \approx \varvec{ B}_u\hat{\varvec{u}}, \end{aligned}$$
(23)

are introduced for the state variables, where \(\hat{\varvec{\sigma }}\), \(\hat{\varvec{r}}\) and \(\hat{\varvec{u}}\) are the nodal variables, \(\varvec{N}\) matrices contain the shape functions, and \(\varvec{B}_u = \varvec{\nabla } \varvec{N}_u\). Substituting the above approximations into the variational principle (18) results in the following discrete principle:

$$\begin{aligned} \begin{array}{lcl} \underset{\varDelta \hat{\varvec{u}}}{\text {min}}~~\underset{(\hat{\varvec{\sigma }},\hat{\varvec{r}})_{n+1}}{\text {max~~}} &{}~&{} \hat{\varvec{\sigma }}_{n+1}^\textsf {{\tiny T}}\varvec{B}\varDelta \hat{\varvec{u}} - {\varvec{f}}^\textsf {{\tiny T}}\varDelta \hat{\varvec{u}}\\ &{}~&{}-\frac{1}{2}\varDelta t^2\hat{\varvec{r}}_{n+1}^\textsf {{\tiny T}}\varvec{D}\hat{\varvec{r}}_{n+1}+ \hat{\varvec{r}}_{n+1}^\textsf {{\tiny T}}\varvec{A}\varDelta \hat{\varvec{u}} \\ \text {subject to} &{}~&{} F(\hat{\varvec{\sigma }}_{n+1}^j) \le 0,~~j=1,\ldots ,n_\sigma \end{array} \end{aligned}$$
(24)

where \(n_\sigma \) is the number of Gauss integration points, and

$$\begin{aligned}&{\varvec{B}} = \int _V \varvec{N}_\sigma ^\textsf {{\tiny T}}{\varvec{B}_u}\,\text {d} V, \end{aligned}$$
(25)
$$\begin{aligned}&{\varvec{f}} = \int _V \varvec{N}_u^\textsf {{\tiny T}}\tilde{\varvec{b}}\,\text {d} V + \int _S \varvec{N}_u^\textsf {{\tiny T}}\tilde{\varvec{t}}\,\text {d} S, \end{aligned}$$
(26)
$$\begin{aligned}&{\varvec{D}} = \int _V \varvec{N}_r^\textsf {{\tiny T}}\tilde{\rho }{}^{-1}\varvec{N}_\sigma \,\text {d} V, \end{aligned}$$
(27)
$$\begin{aligned}&{\varvec{A}} = \int _V \varvec{N}_u^\textsf {{\tiny T}} {\varvec{N}_r}\,\text {d} V. \end{aligned}$$
(28)

Then, solving the minimisation part of (24) gives a maximisation problem as:

$$\begin{aligned} \begin{array}{lcl} \underset{(\hat{\varvec{\sigma }},\hat{\varvec{r}})_{n+1}}{\text {maximise}} &{}~&{} -\frac{1}{2}\varDelta t^2\hat{\varvec{r}}_{n+1}^\textsf {{\tiny T}}\varvec{D}\hat{\varvec{r}}_{n+1} \\ \text {subject to} &{}~&{}\varvec{B}^\textsf {{\tiny T}}\hat{\varvec{\sigma }}_{n+1} + \varvec{A}^\textsf {{\tiny T}}\hat{\varvec{r}}_{n+1} = \varvec{f}\\ &{}~&{} F(\hat{\varvec{\sigma }}_{n+1}^j) \le 0,~~j=1,\ldots ,n_\sigma \end{array} \end{aligned}$$
(29)

At this stage, the contact constrains (4) are imposed on all potential contact nodes (i.e. mesh nodes located on the boundaries), which leads to a final problem of the type:

$$\begin{aligned} \begin{array}{lcl} \underset{(\hat{\varvec{\sigma }},\hat{\varvec{r}},p_j)_{n+1}}{\text {maximize}} &{}~&{} -\frac{1}{2}\varDelta t^2\hat{\varvec{r}}_{n+1}^\textsf {{\tiny T}}\varvec{D}\hat{\varvec{r}}_{n+1}-\sum _{j=1}^{n_c}{ g_{0j} p_j} \\ \text {subject to} &{}~&{}\varvec{B}^\textsf {{\tiny T}}\hat{\varvec{\sigma }}_{n+1} + \varvec{A}^\textsf {{\tiny T}}\hat{\varvec{r}}_{n+1} + {\varvec{E}}^\textsf {{\tiny T}}\varvec{\rho } = \varvec{f}\\ &{}~&{} F(\hat{\varvec{\sigma }}_{n+1}^i) \le 0,~~i=1,\ldots ,n_\sigma \\ &{}~~&{} p_j = -\varvec{n}^\textsf {{\tiny T}}\varvec{\rho }_j,~~~j=1,\ldots , n_c \\ &{}~~&{} q_j = -\hat{\varvec{n}}^\textsf {{\tiny T}}\varvec{\rho }_j \\ &{}~&{} |q_j| - \mu p_j \le 0 \end{array} \end{aligned}$$
(30)

where \(\varvec{\rho } = (\rho _1,\rho _2)^\textsf {{\tiny T}}\) are the nodal forces, \(\varvec{n}=(n_1,n_2)^\textsf {{\tiny T}}\) and \(\hat{\varvec{n}} = (-n_2,n_1)^\textsf {{\tiny T}}\) are the normal and the tangential of the rigid boundary, \(\varvec{E}\) is an index matrix of zeros and ones, and \(n_c\) is the number of potential contacts.

The above problem can be transformed into a standard form of the second-order cone program (SOCP) and then solved using the high performance optimization solver MOSEK [38]. The transformation of (30) into SOCP standard form is straightforward and has been documented in [40]. In the course of solving the problem, the kinematic variables (displacement increments and plastic multipliers) are recovered as the dual variables, or Lagrange multipliers, associated with the discrete equilibrium constraints.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, X., Ding, Y., Sheng, D. et al. Quasi-static collapse of two-dimensional granular columns: insight from continuum modelling. Granular Matter 18, 41 (2016). https://doi.org/10.1007/s10035-016-0643-z

Download citation

  • Received:

  • Published:

  • DOI: https://doi.org/10.1007/s10035-016-0643-z

Keywords

Navigation