Skip to main content
Log in

Discrete modelling of rock avalanches: sensitivity to block and slope geometries

  • Original Paper
  • Published:
Granular Matter Aims and scope Submit manuscript

Abstract

A discrete element model was used to highlight the influence of size, aspect ratio and roundness of blocks onto the propagation of granular flows in order to obtain a more realistic modelling of rock avalanches. The numerical model accounts for energy dissipations by shocks and friction within the granular mass or at the base of the avalanche. A parametric numerical study was performed, based on laboratory experiments involving an assembly of small bricks. A particular attention was paid to explain how the block and slope geometry influence the kinematics of the avalanche (sliding or rotation of particles), and how the dissipative modes are modified (shocks or friction). In particular the effects of elongation, size and roundness of blocks combined to slope undulation were investigated. It was shown that these geometric aspects may have some complex implications in the mechanism of propagation of the granular flow and need to be taken into account to predict properly the final position of the deposit and the area impacted by individual blocks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. Banton, J., Villard, P., Jongmans, D., Scavia, C.: Two-dimensional discrete element models of debris avalanches: parameterisation and the reproducibility of experimental results. J. Geophys. Res. Earth Surf. 114 (2009). doi:10.1029/2008JF001161

  2. Cagnoli, B., Romano, G.P.: Effects of flow volume and grain size on mobility of dry granular flows of angular rock fragments: a functional relationship of scaling parameters. J. Geophys. Res. Solid Earth 117, B02207 (2012)

    ADS  Google Scholar 

  3. Cleary, P.W., Prakash, M.: Discrete-element modeling and smoothed particle hydrodynamics: potential in the environmental sciences. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 362, 2003–2030 (2004). doi:10.1098/rsta.2004.1428

    Article  MathSciNet  ADS  MATH  Google Scholar 

  4. Cuervo, S., Daudon, D., Richefeu, V., Villard, P., Lorentz, J.: Discrete element modeling of a rockfall in the south of the “Massif Central”, France, IAEG XII Congress, Torino, Italia, pp. 15–19. Sept. (2014)

  5. Cundall, P.A.: Formulation of a three-dimensional distinct element model—part I, a scheme to detect and represent contacts in a system composed of many polyhedral blocks. Int. J. Rock Mech. Min. Sci. 25, 107–116 (1988)

    Article  Google Scholar 

  6. Cundall, P.A., Strack, O.D.L.: A discrete numerical-model for granular assemblies. Geotechnique 29(1), 47–65 (1979)

    Article  Google Scholar 

  7. D’Addetta, G.A., Kun, F., Ramm, E.: On the application of a discrete model to the fracture process of cohesive granular materials. Granul. Matter 4, 77–90 (2002)

    Article  MATH  Google Scholar 

  8. Davies, T.R., McSaveney, M.J.: Runout of dry granular avalanches. Can. Geotech. J. 36, 313–320 (1999). doi:10.1139/t98-108

    Article  Google Scholar 

  9. Donze, F.V., Richefeu, V., Magnier, S.A.: Advances in discrete element method applied to soil, rock and concrete mechanics. State Art Geotech. Eng. Elect. J. Geotech. Eng. 44, 1–44 (2009)

    Google Scholar 

  10. El Shamy, U., Gröger, T.: Micromechanical aspects of the shear strength of wet granular soils. Int. J. Numer. Anal. Meth. Geomech. 32(14), 1763–1790 (2008)

    Article  MATH  Google Scholar 

  11. Elghezal, L., Jamei, M., Georgopoulo, O.: DEM simulations of stiff and soft materials with crushable particles: an application of expanded perlite as a soft granular material. Granul. Matter 15, 685–704 (2013). doi:10.1007/s10035-013-0406-z

    Article  Google Scholar 

  12. Feng, Y.T., Owen, D.R.J.: A 2D polygon/polygon contact model: algorithmic aspects. Eng. Comput. 21, 265–277 (2004)

    Article  MATH  Google Scholar 

  13. Friedmann, S.J., Taberlet, N., Losert, W.: Rock-avalanche dynamics: insights from granular physics experiments. Int. J. Earth Sci. 95, 911–919 (2006). doi:10.1007/s00531-006-0067-9

    Article  Google Scholar 

  14. Ghaboussi, J., Barbosa, R.: Three-dimensional discrete element method for granular materials. Int. J. Numer. Anal. Methods Geomech. 14, 451–472 (1990)

    Article  Google Scholar 

  15. Goujon, C., Dalloz-Dubrujeaud, B., Thomas, N.: Bidisperse granular avalanches on inclined planes: a rich variety of behaviors. Eur. Phys. J. E 23, 199–215 (2007). doi:10.1140/epje/i2006-10175-0

    Article  Google Scholar 

  16. Han, K., Feng, Y., Owen, D.: Numerical simulations of irregular particle transport in turbulent flows using coupled lbm-dem. Comput. Meth. Eng. Sci. 18(2), 87–100 (2007)

    MathSciNet  MATH  Google Scholar 

  17. Hart, R., Cundall, P.A., Lemos, L.: Formulation of a three-dimensional distinct element model—part II, mechanical calculations for motion and interaction of a system composed of many polyhedralblocks. Int. J. Rock Mech. Min. Sci. 25, 117–125 (1988)

    Article  Google Scholar 

  18. Hogue, C.: Shape representation and contact detection for discrete element simulations of arbitrary geometries. Eng. Comput. 15, 374–390 (1998)

    Article  MATH  Google Scholar 

  19. Issa, J.A., Nelson, R.N.: Numerical analysis of micromechanical behaviour of granular materials. Eng. Comput. 9, 211–223 (1992)

    Article  Google Scholar 

  20. Iverson, R.M., Logan, M., Denlinger, R.P.: Granular avalanches across irregular three-dimensional terrain: 2. Experimental tests. J. Geophys. Res. 109, F01015 (2004). doi:10.1029/2003JF000084

    ADS  Google Scholar 

  21. Jiang, M.J., Murakami, A.: Distinct element method analyses of idealized bonded-granulate cut slope. Granul. Matter 14(3), 393–410 (2012)

    Article  Google Scholar 

  22. Kumar, K., Soga, K., Delenne, J.Y.: Multi-scale modelling of granular avalanches. AIP Conf. Proc. 1542, 1250 (2013)

    Article  ADS  Google Scholar 

  23. Lin, X., Ng, T.T.: A three-dimensional discrete element model using arrays of ellipsoids. Geotechnique 47, 319–329 (1997)

    Article  Google Scholar 

  24. Luding, S.: About contact force-laws for cohesive friction al materials in 2D and 3D. In: Walzel, P., Linz, S., Krülle, C., Grochowski, R. (eds.) Behavior of Granular Media, Shaker Verlag, pp. 137–147. Band 9, Schriftenreihe Mechanisc he Verfahrenstechnik, ISBN 3-8322-5524-9 (2006)

  25. Mangeney-Castelnau, A., Vilotte, J.P., Bristeau, M.O., Perthame, B., Bouchut, F., Simeoni, C., Yerneni, S.: Numerical modeling of avalanches based on saint venant equations using a kinetic scheme. J. Geophys. Res. Solid Earth 108 (2003). doi:10.1029/2002JB002024

  26. Manzella, I., Labiouse, V.: Flow experiments with gravel and blocks at small scale to investigate parameters and mechanisms involved in rock avalanches. Eng. Geol. Amst. 109, 146–158 (2009). doi:10.1016/j.enggeo.2008.11.006

    Article  Google Scholar 

  27. Manzella, I., Labiouse, V.: Empirical and analytical analyses of laboratory granular flows to investigate rock avalanche propagation. Landslides 10, 23–36 (2013)

    Article  Google Scholar 

  28. Matuttis, H.-G., Luding, S., Herrmann, H.J.: Discrete element simulations of dense packings and heaps made of spherical and non-spherical particles. Powder Technol. 109, 278–292 (2000)

    Article  Google Scholar 

  29. McDougall, S., Hungr, O.: A model for the analysis of rapid landslide motion across three-dimensional terrain. Can. Geotech. J. 41, 1084–1097 (2004)

    Article  Google Scholar 

  30. Mollon, G., Zhao, J.: Fourier–Voronoi-based generation of realistic samples for discrete modelling of granular materials. Granul. Matter 14(5), 621–638 (2012). doi:10.1007/s10035-012-0356-x

    Article  Google Scholar 

  31. Mollon, G., Zhao, J.: Generating realistic 3D sand particles using Fourier descriptors. Granul. Matter 15(1), 95–108 (2013a). doi:10.1007/s10035-012-0380-x

    Article  Google Scholar 

  32. Mollon, G., Zhao, J.: Characterization of fluctuations in granular hopper flow. Granul. Matter 15(6), 827–840 (2013b)

    Article  Google Scholar 

  33. Mollon, G., Richefeu, V., Villard, P., Daudon, D.: Numerical simulation of rock avalanches: influence of a local dissipative contact model on the collective behavior of granular flows. J. Geophys. Res. 117, F02036 (2012). doi:10.1029/2011JF002202

    ADS  Google Scholar 

  34. Mustoe, G.: A generalized formation of the discrete element method. Eng. Comput. 9, 181–190 (1992)

    Article  Google Scholar 

  35. Okura, Y., Kitahara, H., Sammori, T., Kawanami, A.: The effects of rockfall volume on runout distance. Eng. Geol. Amst. 58, 109–124 (2000). doi:10.1016/S0013-7952(00)00049-1

    Article  Google Scholar 

  36. Pirulli, M., Bristea, M.O., Mangeney, A., Scavia, C.: The effect of the earth pressure coefficients on the runout of granular material. Environ. Modell. Softw. 22, 1437–1454 (2007). doi:10.1016/j.envsoft.2006.06.006

    Article  Google Scholar 

  37. Pouliquen, O., Forterre, Y.: Friction law for dense granular flows: application to the motion of a mass down a rough inclined plane. J. Fluid Mech. 453, 133–151 (2002). doi:10.1017/S0022112001006796

    Article  ADS  MATH  Google Scholar 

  38. Richefeu, V., Youssoufi, M.E., Peyrous, M., Radjaï, F.: A model of capillary cohesion for numerical simulations of 3d polydisperse granular media. Int. J. Numer. Anal. Meth. Geomech. 32(11), 1365–1383 (2007)

    Article  Google Scholar 

  39. Richefeu, V., Mollon, G., Daudon, D., Villard, P.: Dissipative contacts and realistic block shapes for modeling rock avalanches. Eng. Geol. 149–150, 78–92 (2012). doi:10.1016/j.enggeo.2012.07.021

    Article  Google Scholar 

  40. Savage, S.B., Hutter, K.: The motion of a finite mass of granular material down a rough incline. J. Fluid Mech. 199, 177–215 (1989). doi:10.1017/S0022112089000340

    Article  MathSciNet  ADS  MATH  Google Scholar 

  41. Scholtès, L., Chareyre, B., Nicot, F., Darve, F.: Micromechanics of granular materials with capillary effects. Int. J. Eng. Sci. 47(1), 64–75 (2009)

    Article  MATH  Google Scholar 

  42. Shi, G., Goodman, R.E.: Discontinuous deformation analysis—a new method for computing stress, strain, and sliding of block systems. In: Cundall, P.A., Sterling, R.L., Starfield, A.M. (eds.) Key questions in mechanicsn Proceedings of the 29th US symposium on rock mechanics, University of Minnesota, June 13–15, 1988, Balkema, pp. 381–393 (1988)

  43. Taboada, A., Estrada, N.: Rock-and-soil avalanches: theory and simulation. J. Geophys. Res. 114, F03004 (2009). doi:10.1029/2008JF001072

  44. Ting, J.M., Khwaja, M., Meachum, L.R., Rowell, J.D.: An ellipse-based discrete element model for granular materials. Int. J. Anal. Numer. Methods Geomech. 17, 603–623 (1993)

    Article  MATH  Google Scholar 

  45. Tommasi, P., Campedel, P., Consorti, C., Ribacchi, R.: A discontinuous approach to the numerical modelling of rock avalanches. Rock Mech. Rock Eng. 41(1), 37–58 (2008)

    Article  ADS  Google Scholar 

  46. Tsoungui, O., Vallet, D., Charmet, J.C.: Numerical model of crushing of grains inside two-dimensional granular materials. Powder Technol. 105, 190–198 (1999)

    Article  Google Scholar 

  47. Valentino, R., Barla, G., Montrasio, L.: Experimental analysis and micromechanical modelling of dry granular flow and impacts in laboratory flume tests. Rock Mech. Rock Eng. 4(1), 153–177 (2008)

    Article  ADS  Google Scholar 

  48. Yang, Q., Cai, F., ugai, K., Yamada, M., Su, Z., Ahmed, A., Huang, R., Xu, Q.: Some factors affecting mass-front velocity of rapid dry granular flows in a large flume. Eng. Geol. 122(2011), 249–260 (2011)

    Article  Google Scholar 

  49. Zeghal, M., El Shamy, U.: Liquefaction of saturated loose and cemented granular soils. Powder Technol. Discrete Elem. Modell. Fluid. Beds 184(2), 254–265 (2008). (Special Issue: Dedicated to Professor Yutaka Tsuji)

    Google Scholar 

  50. Zhou, G.G.D., Sun, Q.C.: Three-dimensional numerical study on flow regimes of dry granular flows by DEM. Powder Technol. 239, 115–127 (2013)

    Article  Google Scholar 

Download references

Acknowledgments

All the authors acknowledge that this study contains original material, as a result of a purely academic study without any kind of private funding. Its publication has been approved by all co-authors and tacitly by the responsible authorities at the institutes where the work has been carried out.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guilhem Mollon.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mollon, G., Richefeu, V., Villard, P. et al. Discrete modelling of rock avalanches: sensitivity to block and slope geometries. Granular Matter 17, 645–666 (2015). https://doi.org/10.1007/s10035-015-0586-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10035-015-0586-9

Keywords

Navigation