Skip to main content
Log in

Analytical description of the unsteady settling of spherical particles in Stokes and Newton regimes

  • Original Paper
  • Published:
Granular Matter Aims and scope Submit manuscript

Abstract

In most solid processes, the separation of particles is important and designed based on the terminal settling velocity as the characteristically distributed particle property. This settling velocity is determined by distributed particle properties like size, density, and shape. Although the settling of particles driven by an external force (gravitation or centrifugal field) is an unsteady process, the temporal changes of the particle settling velocity are relevant for the microscopic process design. These temporal changes correspond to spatial changes along the path-line. Generally, the particle state of motion is described by solving numerically the force balance equations in fluid dynamic simulations which are highly complex. In this work, algebraic solutions are presented instead, suitable for describing the temporal changes of the settling velocity and the displacement at settling for laminar and turbulent flows around the particle. These equations solely depend upon particle properties like size, density, and shape and are valid independently from the initial velocity. Thus, and at the difference to known publications, it is not assumed that the particles are initially at rest. Finally, the relaxation time at which terminal settling velocity is approximately reached can be clearly identified.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

A:

Cross-sectional area \((\hbox {m}^{2})\)

\(\hbox {c}_{\mathrm{w}}\) :

Drag coefficient \((-)\)

d:

Diameter (m)

\(\hbox {D}_{\uprho }\) :

Density function \((-)\)

\(\hbox {F}_{\mathrm{A}}\) :

Buoyancy force (N)

\(\hbox {F}_{\mathrm{g}}\) :

Gravity force (N)

\(\hbox {F}_{\mathrm{j}}\) :

Inertia force of the fluid shell (N)

\(\hbox {F}_{\mathrm{T}}\) :

Inertia force of the particle (N)

\(\hbox {F}_{\mathrm{w}}\) :

Drag force (N)

g:

Gravity \((\hbox {m}/\hbox {s}^{2})\)

j:

Volumetric fraction of the fluid shell around the particle

Re:

Reynolds number

s:

Settling distance (m)

t:

Settling time (s)

T:

Absolute temperature (K)

u:

Fluid velocity (m/s)

v:

Particle velocity (m/s)

V:

Volume \((\hbox {m}^{3})\)

0:

Initial state

63, 76, 95, 96:

Characteristic values

f:

Fluid phase

p:

Solid phase, particle phase

r:

Relative

R:

Relaxation

s:

Steady state

References

  1. Schubert, H. (ed.): Handbuch der Mechanischen Verfahrenstechnik, 1st edn. Wiley-VCH Verlag GmbH & co. KGaA, Weinheim (2003)

    Google Scholar 

  2. Tomas, J.: Gravity separation of particulate solids in turbulent fluid llow. Part. Sci. Technol. 22, 169–188 (2004)

    Article  Google Scholar 

  3. Ferreira, J.M., Chhabra, R.P.: Accelerating motion of a vertically falling sphere in incompressible Newtonian media: an analytical solution. Powder Technol. 97, 6–15 (1998)

    Article  Google Scholar 

  4. Stieß, M.: Mechanische Verfahrenstechnik-Partikeltechnologie 1, 3rd complete revised Edition. Springer, Berlin (2009)

  5. Stokes, G.G.: On the effect of the internal frictions of fluids on the motion of pendulums. Transact. Camb. Philos. Soc. 9, 8–106 (1851)

    ADS  Google Scholar 

  6. Kürten, H., Raasch, J., Rumpf, H.: Beschleunigung eines kugelförmigen Feststoffteilchens im Strömungsfeld konstanter Geschwindigkeit. Chem. Ing. Tech. 38(9), 941–948 (1966)

    Article  Google Scholar 

  7. Kaskas, A.A.: Schwarmgeschwindigkeiten in Mehrkornsuspensionen am Beispiel der Sedimentation. Dissertation, TU Berlin, Berlin (1970)

  8. Haider, A., Levenspiel, O.: Drag coefficient and terminal velocity of spherical and nonspherical particles. Powder Technol. 58(1), 63–70 (1989)

    Article  Google Scholar 

  9. Schiller, L., Naumann, A.: Über die grundlegende Berechnung bei der Schwerkraftaufbereitung. Zeitschrift des Vereines deutscher Ingenieure 77(12), 318–320 (1933)

    Google Scholar 

  10. Sommerfeld, M., Horender, S.: Fluid Mechanics, Ullmann’s Encyclopedia of Industrial Chemistry. Wiley-VCH Verlag GmbH & co. KGaA, Weinheim (2012)

    Google Scholar 

  11. Tsotsas, E., Mujumdar, A.S.: Modern Drying Technology, Volume 1: Computational Tools at Different Scales, 1st edn. Wiley-VCH Verlag GmbH & co. KGaA, Weinheim (2007)

    Book  Google Scholar 

  12. Rudinger, G.: Relaxation in Gas-Particle Flow, Project SQUID Technical Report No. CAL-96-PU. Buffalo (1968)

  13. Brennen, C.E.: Fundamentals of Multiphase Flow, 1st edn. Cambridge University Press, New York (2005)

    MATH  Google Scholar 

  14. Jalaal, M., Ganji, D.D., Ahmadi, G.: Analytical investigation on acceleration motion of a vertically falling spherical particle in incompressible Newtonian media. Adv. Powder Technol. 21, 298–304 (2010)

    Article  Google Scholar 

  15. Torabi, M., Yaghoobi, H.: Novel solution for acceleration motion of a vertically falling spherical particle by HPM-Padé approximant. Adv. Powder Technol. 22, 674–677 (2011)

    Article  Google Scholar 

  16. Nouri, R., Ganji, D.D., Hatami, M.: Unsteady sedimentation analysis of spherical particles in Newtonian fluid media using analytical methods. Propuls. Power Res. 3(2), 96–105 (2014)

    Article  Google Scholar 

  17. Ortego-Rivas, E.: Hydrocyclones, Ullmann’s Encyclopedia of Industrial Chemistry. Wiley-VCH Verlag GmbH & co. KGaA, Weinheim (2012)

    Google Scholar 

  18. Fries, L., Antonyuk, S., Heinrich, S., Dopfer, D., Palzer, S.: Collision dynamics in fluidised bed granulators: a DEM-CFD study. Chem. Eng. Sci. 86, 108–123 (2013)

    Article  Google Scholar 

  19. Tomas, J., Gröger, T.: Mehrstufige turbulente Aerosortierung von Bauschutt. Aufbereitungs-Technik 40(8), 379–386 (1999)

    Google Scholar 

  20. Zeidler, E. (ed.): Springer-Taschenbuch der Mathematik, 3rd revised and extended Edition. Springer Spektrum, Wiesbaden (2013)

  21. Verein Deutscher Ingenieure VDI-Gesellschaft Verfahrenstechnik und Chemie-ingenieurwesen (Ed.), VDI-Wärmeatlas, 10., bearbeitete und erweiterte Auflage, Springer-Verlag, Berlin Heidelberg (2006)

Download references

Acknowledgments

This work is part of the priority program SPP 1679 “Dynamische Simulation vernetzter Feststoffprozesse” and is supported financially by the Deutsche Forschungsgemeinschaft (DFG). Interesting discussions with Amir Eshghinejadfard are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hannes Mann.

Additional information

Translated and extended version of the original research article published in Gloeckner et al. Chem Ing Tech 87(5):644–655 (2015).

The research conducted here is a research performed at the University of Magdeburg using University-owned computers and commercial software.

Appendix: Derivation of particle settling for turbulent flow conditions in Newton-regime

Appendix: Derivation of particle settling for turbulent flow conditions in Newton-regime

1.1 Velocity-time law

From Eq. (27) the velocity-time law is derived. Rearranging gives

$$\begin{aligned} \int \nolimits _{\mathrm{v} = {\mathrm{v}}_0}^\mathrm{v} \frac{\hbox {dv}}{\hbox {v}_\mathrm{s}^2 -\hbox {v}^{2}}=\int \nolimits _{\mathrm{t} = {\mathrm{t}}_0}^\mathrm{t} \frac{1}{\hbox {t}_\mathrm{R} \hbox {v}_\mathrm{s}}\hbox {dt} \end{aligned}$$
(101)

as the equation which has to be solved using the indefinite integral [20]

$$\begin{aligned} \int \frac{\hbox {dx}}{\hbox {Q}}=\int \frac{\hbox {dx}}{\hbox {a}^{2}-\hbox {x}^{2}}=\left\{ {{\begin{array}{l} {\left[ {\frac{1}{2\hbox {a}}\hbox {ln}\frac{\hbox {a}+\hbox {x}}{\hbox {a}-\hbox {x}}} \right] _{\left| \mathrm{x} \right| <a}} \\ {\left[ {\frac{1}{2\hbox {a}}\hbox {ln}\frac{\hbox {x}+\hbox {a}}{\hbox {x}-\hbox {a}}} \right] _{\left| \mathrm{x} \right| >a}} \\ \end{array}}} \right. \end{aligned}$$
(102)

which is valid for \(\hbox {v}_{\mathrm{s}} \ne 0\). After rigorous examination, it can be shown that

$$\begin{aligned} \int \frac{\hbox {dx}}{\hbox {Q}}=\left[ {\frac{1}{2\hbox {a}}\hbox {ln}\frac{\hbox {a}+\hbox {x}}{\hbox {a}-\hbox {x}}} \right] _{\mathrm{x} = \mathrm{x}_0}^\mathrm{x} =\frac{1}{2\hbox {a}}\hbox {ln}\frac{\frac{\hbox {a}+\hbox {x}}{\hbox {a}-\hbox {x}}}{\frac{\hbox {a}+\hbox {x}_0 }{\hbox {a}-\hbox {x}_0}} \end{aligned}$$
(103)

and

$$\begin{aligned} \int \frac{\hbox {dx}}{\hbox {Q}}= & {} \left[ {\frac{1}{2\hbox {a}}\hbox {ln}\frac{\hbox {x}+\hbox {a}}{\hbox {x}-\hbox {a}}} \right] _{\mathrm{x}= \mathrm{x}_0}^\mathrm{x} =\frac{1}{2\hbox {a}}\hbox {ln}\frac{\frac{\hbox {x}+\hbox {a}}{\hbox {x}-\hbox {a}}}{\frac{\hbox {x}_0 +\hbox {a}}{\hbox {x}_0 -\hbox {a}}} \end{aligned}$$
(104)
$$\begin{aligned} \int \frac{\hbox {dx}}{\hbox {Q}}= & {} \frac{1}{2\hbox {a}}\hbox {ln}\frac{-\left( {\frac{\hbox {a}+\hbox {x}}{\hbox {a}-\hbox {x}}} \right) }{-\left( {\frac{\hbox {a}+\hbox {x}_0}{\hbox {a}-\hbox {x}_0}} \right) }=\frac{1}{2\hbox {a}}\hbox {ln}\frac{\frac{\hbox {a}+\hbox {x}}{\hbox {a}-\hbox {x}}}{\frac{\hbox {a}+\hbox {x}_0 }{\hbox {a}-\hbox {x}_0}} \end{aligned}$$
(105)

are equal. Therefore, Eq. (113) describes the particles’ state of motion.

$$\begin{aligned}&\frac{1}{2\hbox {v}_\mathrm{s}}\left[ {\hbox {ln}\frac{\hbox {v}_\mathrm{s} +\hbox {v}}{\hbox {v}_\mathrm{s} -\hbox {v}}} \right] _{\mathrm{v} = \mathrm{v}_0}^\mathrm{v} =\frac{1}{\hbox {t}_\mathrm{R} \hbox {v}_\mathrm{s} }\left[ \hbox {t} \right] _{\mathrm{t} = \mathrm{t}_0}^\mathrm{t} \end{aligned}$$
(106)
$$\begin{aligned}&\hbox {ln}\frac{\frac{\hbox {v}_\mathrm{s} +\hbox {v}}{\hbox {v}_\mathrm{s} -\hbox {v}}}{\frac{\hbox {v}_\mathrm{s} +\hbox {v}_0}{\hbox {v}_\mathrm{s} -\hbox {v}_0}}=\frac{2}{\hbox {t}_\mathrm{R}}\left( {\hbox {t}-\hbox {t}_0} \right) \end{aligned}$$
(107)
$$\begin{aligned}&\frac{\frac{\hbox {v}_\mathrm{s} +\hbox {v}}{\hbox {v}_\mathrm{s} -\hbox {v}}}{\frac{\hbox {v}_\mathrm{s} +\hbox {v}_0}{\hbox {v}_\mathrm{s} -\hbox {v}_0}}=\exp \left( {\frac{2}{\hbox {t}_\mathrm{R}}\left( {\hbox {t}-\hbox {t}_0} \right) } \right) \end{aligned}$$
(108)
$$\begin{aligned}&\hbox {v}_\mathrm{s} +\hbox {v}=\left( {\hbox {v}_\mathrm{s} -\hbox {v}} \right) \left( {\frac{\hbox {v}_\mathrm{s} +\hbox {v}_0}{\hbox {v}_\mathrm{s} -\hbox {v}_0}\exp \left( {\frac{2}{\hbox {t}_\mathrm{R}}\left( {\hbox {t}-\hbox {t}_0} \right) } \right) } \right) \end{aligned}$$
(109)
$$\begin{aligned}&\hbox {v}\left( {\frac{\hbox {v}_\mathrm{s} +\hbox {v}_0}{\hbox {v}_\mathrm{s} -\hbox {v}_0}\exp \left( {\frac{2}{\hbox {t}_\mathrm{R}}\left( {\hbox {t}-\hbox {t}_0} \right) } \right) +1} \right) \nonumber \\&\quad =\hbox {v}_\mathrm{s} \left( {\frac{\hbox {v}_\mathrm{s} +\hbox {v}_0}{\hbox {v}_\mathrm{s} -\hbox {v}_0}\exp \left( {\frac{2}{\hbox {t}_\mathrm{R}}\left( {\hbox {t}-\hbox {t}_0} \right) } \right) -1} \right) \end{aligned}$$
(110)
$$\begin{aligned}&\hbox {v}=\hbox {v}_\mathrm{s} \frac{\left( {\frac{\hbox {v}_\mathrm{s} +\hbox {v}_0}{\hbox {v}_\mathrm{s} -\hbox {v}_0}\exp \left( {\frac{2}{\hbox {t}_\mathrm{R}}\left( {\hbox {t}-\hbox {t}_0} \right) } \right) -1} \right) }{\left( {\frac{\hbox {v}_\mathrm{s} +\hbox {v}_0 }{\hbox {v}_\mathrm{s} -\hbox {v}_0}\exp \left( {\frac{2}{\hbox {t}_\mathrm{R}}\left( {\hbox {t}-\hbox {t}_0} \right) } \right) +1} \right) } \end{aligned}$$
(111)
$$\begin{aligned}&\hbox {v}=\hbox {v}_\mathrm{s} \frac{\left( {\frac{\left( {\hbox {v}_\mathrm{s} +\hbox {v}_{0}} \right) \exp \left( {\frac{2}{\hbox {t}_\mathrm{R}}\left( {\hbox {t}-\hbox {t}_0} \right) } \right) -\left( {\hbox {v}_\mathrm{s} -\hbox {v}_0} \right) }{\hbox {v}_\mathrm{s} -\hbox {v}_0}} \right) }{\left( {\frac{\left( {\hbox {v}_\mathrm{s} +\hbox {v}_{0}} \right) \exp \left( {\frac{2}{\hbox {t}_\mathrm{R}}\left( {\hbox {t}-\hbox {t}_0} \right) } \right) +\left( {\hbox {v}_\mathrm{s} -\hbox {v}_0} \right) }{\hbox {v}_\mathrm{s} -\hbox {v}_0}} \right) } \end{aligned}$$
(112)
$$\begin{aligned}&\hbox {v}=\hbox {v}_\mathrm{s} \frac{\left( {\hbox {v}_\mathrm{s} +\hbox {v}_{0}} \right) \exp \left( {\frac{2}{\hbox {t}_\mathrm{R} }\left( {\hbox {t}-\hbox {t}_0} \right) } \right) -\hbox {v}_\mathrm{s} +\hbox {v}_0}{\left( {\hbox {v}_\mathrm{s} +\hbox {v}_{0}} \right) \exp \left( {\frac{2}{\hbox {t}_\mathrm{R}}\left( {\hbox {t}-\hbox {t}_0} \right) } \right) +\hbox {v}_\mathrm{s} -\hbox {v}_0} \end{aligned}$$
(113)

In case of simple initial conditions \(\hbox {t}_{0} = 0\) and \(\hbox {v}_{0} = 0\) (particle at rest), Eq. (116) is the simplified expression that has been shown by Brennen [13].

$$\begin{aligned} \hbox {v}= & {} \hbox {v}_\mathrm{s} \frac{\left( {\hbox {v}_\mathrm{s} +0} \right) \exp \left( {\frac{2}{\hbox {t}_\mathrm{R}}\left( {\hbox {t}-0} \right) } \right) -\hbox {v}_\mathrm{s} +0}{\left( {\hbox {v}_\mathrm{s} +0} \right) \exp \left( {\frac{2}{\hbox {t}_\mathrm{R}}\left( {\hbox {t}-0} \right) } \right) +\hbox {v}_\mathrm{s} -0} \end{aligned}$$
(114)
$$\begin{aligned} \hbox {v}= & {} \hbox {v}_\mathrm{s} \frac{\exp \left( {\frac{2\hbox {t}}{\hbox {t}_\mathrm{R}}} \right) -1}{\exp \left( {\frac{2\hbox {t}}{\hbox {t}_\mathrm{R}}} \right) +1} \end{aligned}$$
(115)
$$\begin{aligned} \hbox {v}= & {} \hbox {v}_\mathrm{s} \tanh \left( {\frac{\hbox {t}}{\hbox {t}_\mathrm{R}}} \right) \end{aligned}$$
(116)

1.2 Distance-time law

Based on Eqs. (33) or (116), the distance-time law in the Newton regime is derived. Therefore,

$$\begin{aligned} \frac{\hbox {ds}}{\hbox {dt}}= & {} \hbox {v}_\mathrm{s} \frac{\left( {\hbox {v}_\mathrm{s} +\hbox {v}_{0}} \right) \exp \left( {\frac{2}{\hbox {t}_\mathrm{R}}\left( {\hbox {t}-\hbox {t}_0} \right) } \right) -\hbox {v}_\mathrm{s} +\hbox {v}_0 +\left( {\hbox {v}_\mathrm{s} -\hbox {v}_0} \right) -(\hbox {v}_\mathrm{s} -\hbox {v}_0 )}{\left( {\hbox {v}_\mathrm{s} +\hbox {v}_{0}} \right) \exp \left( {\frac{2}{\hbox {t}_\mathrm{R}}\left( {\hbox {t}-\hbox {t}_0} \right) } \right) +\hbox {v}_\mathrm{s} -\hbox {v}_0} \end{aligned}$$
(117)
$$\begin{aligned} \int \nolimits _{\mathrm{s} = {\mathrm{s}}_0}^\mathrm{s} \hbox {ds}= & {} \hbox {v}_\mathrm{s} \int \nolimits _{\mathrm{t} = \mathrm{t}_0 }^\mathrm{t} \left( \frac{\left( {\hbox {v}_\mathrm{s} +\hbox {v}_{0}} \right) \exp \left( \frac{2}{\hbox {t}_\mathrm{R}}\left( {\hbox {t}-\hbox {t}_0} \right) \right) +\hbox {v}_\mathrm{s} -\hbox {v}_0 }{\left( {\hbox {v}_\mathrm{s} +\hbox {v}_{0}} \right) \exp \left( {\frac{2}{\hbox {t}_\mathrm{R}}\left( {\hbox {t}-\hbox {t}_0} \right) } \right) +\hbox {v}_\mathrm{s} -\hbox {v}_0}\right. \nonumber \\&\left. -\,2\frac{\hbox {v}_\mathrm{s} -\hbox {v}_0}{\left( {\hbox {v}_\mathrm{s} +\hbox {v}_{0}} \right) \exp \left( {\frac{2}{\hbox {t}_\mathrm{R}}\left( {\hbox {t}-\hbox {t}_0} \right) } \right) +\hbox {v}_\mathrm{s} -\hbox {v}_0} \right) \hbox {dt} \end{aligned}$$
(118)
$$\begin{aligned} \int \nolimits _{\mathrm{s} = {\mathrm{s}}_0}^\mathrm{s} \hbox {ds}=\hbox {v}_\mathrm{s} \left( {\int \nolimits _{\mathrm{t} = {\mathrm{t}}_0}^\mathrm{t} \hbox {dt}-2\left( {\hbox {v}_\mathrm{s} -\hbox {v}_0} \right) \int \nolimits _{\mathrm{t} = {\mathrm{t}}_0}^\mathrm{t} \left( {\frac{1}{\frac{\hbox {v}_\mathrm{s} +\hbox {v}_{0}}{\exp \left( {\frac{2}{\hbox {t}_\mathrm{R}}\hbox {t}_0} \right) }\exp \left( {\frac{2}{\hbox {t}_\mathrm{R}}\hbox {t}} \right) +\hbox {v}_\mathrm{s} -\hbox {v}_0}} \right) \hbox {dt}} \right) \end{aligned}$$
(119)

needs to be solved. Usage of the indefinite integral [20]

$$\begin{aligned} 2\hbox {b}\int \frac{1}{\hbox {b}+\hbox {c}\exp \left( {\hbox {ax}} \right) }\hbox {dx}= & {} 2\hbox {b}\left( {\frac{\hbox {x}}{\hbox {b}}-\frac{1}{\hbox {ab}}\ln \left( {\hbox {b}+\hbox {c}\exp \left( {\hbox {ax}} \right) } \right) } \right) \nonumber \\= & {} 2\hbox {x}-\frac{2}{\hbox {a}}\ln \left( {\hbox {b}+\hbox {c}\exp \left( {\hbox {ax}} \right) } \right) \end{aligned}$$
(120)

and offers a possibility to solve the right term of Eq. (119). Hence, Eq. (124) is the general distance-time law.

$$\begin{aligned}&\left[ \hbox {s} \right] _{\mathrm{s} = \mathrm{s}_0}^\mathrm{s} =\hbox {v}_\mathrm{s} \left( {\left[ \hbox {t} \right] _{\mathrm{t}= \mathrm{t}_0}^\mathrm{t} -\left[ {2\hbox {t}-\frac{2}{\left( {\frac{2}{\hbox {t}_\mathrm{R}}} \right) }\ln \left( {\frac{\hbox {v}_\mathrm{s} +\hbox {v}_{0}}{\exp \left( {\frac{2}{\hbox {t}_\mathrm{R}}\hbox {t}_0} \right) }\exp \left( {\frac{2}{\hbox {t}_\mathrm{R}}\hbox {t}} \right) +\hbox {v}_\mathrm{s} -\hbox {v}_0} \right) } \right] _{\mathrm{t} = \mathrm{t}_0}^\mathrm{t}} \right) \end{aligned}$$
(121)
$$\begin{aligned}&\hbox {s}-\hbox {s}_0 =\hbox {v}_\mathrm{s} \left( {\hbox {t}-\hbox {t}_0 -2\left( {\hbox {t}-\hbox {t}_0} \right) +\hbox {t}_\mathrm{R} \hbox {ln}\frac{\left( {\hbox {v}_\mathrm{s} +\hbox {v}_{0}} \right) \exp \left( {\frac{2}{\hbox {t}_\mathrm{R}}\left( {\hbox {t}-\hbox {t}_0} \right) } \right) +\hbox {v}_\mathrm{s} -\hbox {v}_0}{\left( {\hbox {v}_\mathrm{s} +\hbox {v}_{0}} \right) \exp \left( {\frac{2}{\hbox {t}_\mathrm{R}}\left( {\hbox {t}_0 -\hbox {t}_0} \right) } \right) +\hbox {v}_\mathrm{s} -\hbox {v}_0}} \right) \end{aligned}$$
(122)
$$\begin{aligned}&\hbox {s}-\hbox {s}_0 =\hbox {v}_\mathrm{s} \left( {-\left( {\hbox {t}-\hbox {t}_0} \right) +\hbox {t}_\mathrm{R} \hbox {ln}\frac{\left( {\hbox {v}_\mathrm{s} +\hbox {v}_{0}} \right) \exp \left( {\frac{2}{\hbox {t}_\mathrm{R}}\left( {\hbox {t}-\hbox {t}_0} \right) } \right) +\hbox {v}_\mathrm{s} -\hbox {v}_0}{\hbox {v}_\mathrm{s} +\hbox {v}_{0} +\hbox {v}_\mathrm{s} -\hbox {v}_0}} \right) \end{aligned}$$
(123)
$$\begin{aligned}&\hbox {s}=\hbox {s}_0 +\hbox {v}_\mathrm{s} \left( {-\left( {\hbox {t}-\hbox {t}_0} \right) +\hbox {t}_\mathrm{R} \hbox {ln}\frac{\left( {\hbox {v}_\mathrm{s} +\hbox {v}_{0}} \right) \exp \left( {\frac{2}{\hbox {t}_\mathrm{R}}\left( {\hbox {t}-\hbox {t}_0} \right) } \right) +\hbox {v}_\mathrm{s} -\hbox {v}_0}{2\hbox {v}_\mathrm{s}}} \right) \end{aligned}$$
(124)

For \(\hbox {s}_{0} = 0, \hbox {t}_{0} = 0\) and \(\hbox {v}_{0} = 0\), Eq. (125) results.

$$\begin{aligned} \hbox {s}=\hbox {v}_\mathrm{s} \left( {\hbox {t}_\mathrm{R} \hbox {ln}\frac{\hbox {exp}\left( {\frac{2}{\hbox {t}_\mathrm{R} }\hbox {t}} \right) +1}{2}-\hbox {t}} \right) \end{aligned}$$
(125)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mann, H., Mueller, P., Hagemeier, T. et al. Analytical description of the unsteady settling of spherical particles in Stokes and Newton regimes. Granular Matter 17, 629–644 (2015). https://doi.org/10.1007/s10035-015-0584-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10035-015-0584-y

Keywords

Navigation