Skip to main content
Log in

Terminal depth of penetration of spherical projectiles in transparent granular media

  • Original Paper
  • Published:
Granular Matter Aims and scope Submit manuscript

Abstract

A series of 80 penetration tests were performed to study the terminal depth of penetration into dry and saturated transparent synthetic sand. The transparent sand was made by matching the refractive index of granulated fused quartz with a pore fluid made of either sucrose or mineral oil. Tests were conducted by shooting spherical projectiles at speeds of up to 200 m/s into the transparent soil and recording the depth of penetration non-intrusively, when possible. Analysis using existing physical and empirical models was conducted to see how well these models describe the penetration event into fused quartz and to provide best fit parameters. Adjustments to published models have also been derived which result in adequate correlations to the experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

\(e\) :

Void ratio

\(F\) :

Force on the projectile

\(M\) :

Mass

\(V\) :

Instantaneous velocity of the projectile

\(\rho \) :

Density of the penetrated medium

\(A\) :

Projectile frontal area

\(C\) :

Coefficient that plays role of drag in Newton’s third law

\(C_{D}\) :

Drag coefficient used in aerodynamics

\(C_{p}\) :

Drag coefficient used in Poncelet model

\(R\) :

Static strength term proportional to the yield strength of the material

\(B\) :

Viscous term

\(d\) :

Diameter

\(\rho _{p}\) :

Density of the projectile

\(\rho _{t}\) :

Total (bulk) density of the target

\(P\) :

Terminal depth of penetration

\(v_{o}\) :

Impact velocity

\(W\) :

Weight of the projectile

\(S\) :

Soil penetrability number in Young’s equation

N:

Nose performance coefficient in Young’s equation

CRH :

Caliber radius head

\(L_{n}\) :

Nose length

\(K_{s}\) :

Mass scaling term in Young’s equation

\(K_{s}^{\prime }\) :

Modified mass scaling term for use in Young’s equation

References

  1. Allen, W.A., Mayfield, E.B., Morrison, H.L.: Dynamics of a projectile penetration sand. J. Appl. Phys. 28, 370–376 (1957)

    Article  ADS  MATH  Google Scholar 

  2. Ambroso, M.A., Santore, C.R., Abate, A.R., Durian, D.J.: Penetration depth for shallow impact cratering. Phys. Rev. E 71, 051305 (2005)

    Article  ADS  Google Scholar 

  3. Bagnold, R.A.: Experiments on a gravity-free dispersion of large solid spheres in a Newtonian fluid under shear. Proc. R. Soc. A 225, 49–63 (1954)

    Article  ADS  Google Scholar 

  4. Bless, S., Peden, B., Guzman, I.L., Omidvar, M.: Poncelet coefficients of granular media. In: Society for Experimental Mechanics Proc Annual Conf and Exposition on Experimental and Applied Mechanics, Lombard, Il (2013)

  5. Bless, S.J., Cooper, W., Watanbe, K.: Penetration of Rigid Rods into Sand. International Symposium on Ballistics, Miami (2011)

    Google Scholar 

  6. Borg, J.P., Vogler, J.T.: An experimental investigation of a high velocity projectile penetrating sand. In: XIth International Congress and Exposition, Orlando, Florida, USA. Society of Experimental Mechanics Inc (2008)

  7. Caudle, W.N., Pope, A.Y., McNeill, R.L., Margason, B.E.: The feasibility of rapid soil investigations using high-speed earth-penetrating projectiles. In: Proceeding of the International Symposium on Wave Propagation and Dynamic Properties of Earth Materials, New Mexico, pp. 945–955 (1968)

  8. Cave, A., Roslyakov, S., Iskander, M., Bless, S.: Design and performance of a laboratory pneumatic gun for soil ballistic applications. In: Experimental Techniques, Society of Experimental Techniques, pp. 1–13 (2014). doi:10.1111/ext.12091

  9. Clark, A.H., Behringer, R.P.: Granular impact model as an energy-depth relation. EPL (Europhysics Letters) 101, 64001 (2013)

    Article  ADS  Google Scholar 

  10. Cooper, W., Breaux, B.A.: Grain fracture in rapid particulate media deformation and a particulate media research roadmap from the PMEE workshop. Int. J. Fract. 162, 137–150 (2010)

    Article  MATH  Google Scholar 

  11. Daniels, K.E., Coppock, J.E., Behringer, R.P.: Dynamics of meteor impacts. Chaos Interdiscip. J. Nonlinear Sci. 14, S4–S4 (2004)

    Article  Google Scholar 

  12. Dayal, U., Allen, J.H., Jones, J.M.: Use of an impact penetrometer for the evaluation of insitu strength of marine sediments. Mar. Geotechnol. 1, 73–89 (1975)

    Article  Google Scholar 

  13. de Bruyn, J.R., Walsh, A.M.: Penetration of spheres into loose granular media. Can. J. Phys. 82, 439–446 (2004)

    Article  ADS  Google Scholar 

  14. Ezzein, F.M., Bathurst, R.J.: A transparent sand for geotechnical laboratory modeling. ASTM Geotech. Test. J. 34, 1–12 (2011)

    Google Scholar 

  15. Goldman, D.I., Umbanhowar, P.: Scaling and dynamics of sphere and disk impact into granular media. Phys. Rev. E 77, 021308 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  16. Guzman, I.L., Iskander, M.: Geotechnical properties of sucrose-saturated fused quartz for use in physical modeling. Geotech. Test. J. 36, 448–454 (2013)

    Article  Google Scholar 

  17. Guzman, I.L., Iskander, M., Suescun-Florez, E., Omidvar, M.: A transparent aqueous-saturated sand surrogate for use in physical modeling. Acta Geotech. 9, 187–206 (2013)

    Article  Google Scholar 

  18. Guzman, I.L.: Development of a Transparent Soil for Simulating Projectile Penetration into Sands. Civil and Urban Engineering. Polytechnic Institute of New York University (2014)

  19. Hunt, R.E.: Geotechnical Engineering Investigation Manual. McGraw-Hill, New York (1984)

    Google Scholar 

  20. Iskander, M.: Modelling with Transparent Soils, Visualizing Soil Structure Interaction and Multi Phase Flow, Non-Intrusively. Springer, Berlin (2010)

    Google Scholar 

  21. Katsuragi, H., Durian, D.J.: Unified force law for granular impact cratering. Nat. Phys. 3, 420–423 (2007)

    Article  Google Scholar 

  22. Kondic, L., Fang, X., Losert, W., O’Hern, C.S., Behringer, R.P.: Microstructure evolution during impact on granular matter. Phys. Rev. E 85, 011305 (2012)

    Article  ADS  Google Scholar 

  23. Melosh, H.J.: Impact Cratering: A Geologic Process. Oxford University Press, New York (1989)

    Google Scholar 

  24. Omidvar, M., Iskander, M., Bless, S.: Response of granular media to rapid penetration. Int. J. Impact Eng. 66, 60–82 (2014)

  25. Omidvar, M., Chen, Z., Bless, S.: Scale bridging interactions during penetration of granular materials. In: Society of Engineering Mechanics Annual Exposition (2015)

  26. Peden, R., Omidvar, M., Bless, S., Iskander, M.: Photonic doppler velocimetry for study of rapid penetration into sand. Geotechn. Test. J. 37, 139–150 (2014)

    Google Scholar 

  27. Pica Ciamarra, M., Lara, A.H., Lee, A.T., Goldman, D.I., Vishik, I., Swinney, H.L.: Dynamics of drag and force distributions for projectile impact in a granular medium. Phys. Rev. Lett. 92, 194301 (2004)

    Article  ADS  Google Scholar 

  28. Poncelet, J.V.: Introduction Ii la Mecanique Industrielle, 2nd edn. Brussels (1839)

  29. Robins, B.: New Principles of Gunnery. London, England (1742)

  30. Schneider, B.E., Stilp, A.: Projectile penetration into low density media. In: 8th International Symposium of Ballistics, Orland, FL (1984)

  31. Seguin, A., Bertho, Y., Gondret, P.: Influence of confinement on granular penetration by impact. Phys. Rev. E 78, 010301 (2008)

    Article  ADS  Google Scholar 

  32. Seguin, A., Bertho, Y., Gondret, P., Crassous, J.: Sphere penetration by impact in a granular medium: a collisional process. Europhys. Lett. 88(4), 1–6 (2009). doi:10.1209/0295-5075/88/44002

  33. True, D.G.: Undrained Vertical Penetration into Ocean Bottom Soils. Ph.D. Dissertation. University of California, Berkeley, CA (1976)

  34. Uehara, J.S., Ambroso, M.A., Ojha, R.P., Durian, D.J.: Low-speed impact craters in loose granular media. Phys. Rev. Lett. 90, 194301 (2003)

    Article  ADS  Google Scholar 

  35. Young, C.W.: Penetration Equations Report No. SAND97-2426. Sandia Laboratories, Albuquerque (1997)

    Google Scholar 

  36. Zelikson, A., Boisson, J.Y., Leguay, P., Hembise, O., Bradley, P.: Instrumented projectiles in centrifuge modeling of sea bed penetration. Soil Dyn. Earthq. Eng. 5, 239–247 (1986)

    Article  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the support of the Defense Threat Reduction Agency Grant No: HDTRA1- 10-1-0049 and The United States National Science Foundation Grant No: DGE 0741714. Fused quartz powder used in this investigation was manufactured by Mineral Technology Corporation (Mintec). Low Color Sucrose\(^\mathrm{TM}\) used to match the fused quartz was manufactured by Indiana Sugars. Krystol \(40^\mathrm{TM}\) and Puretol \(7^\mathrm{TM}\) used to match the fused quartz were manufactured by PetroCanada/Suncor. The high speed image in Fig. 1 was captured using a NAC HX-5 camera.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Magued Iskander.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guzman, I.L., Iskander, M., Bless, S. et al. Terminal depth of penetration of spherical projectiles in transparent granular media. Granular Matter 16, 829–842 (2014). https://doi.org/10.1007/s10035-014-0528-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10035-014-0528-y

Keywords

Navigation