Skip to main content
Log in

Self-assembling of non-Brownian magnetized spheres

  • Original Paper
  • Published:
Granular Matter Aims and scope Submit manuscript

Abstract

If we pour spherical beads in a container and then gently shake it to increase the compaction of the system, the packing fraction will converge logarithmically to 0.64, the density of a random close packing. If the system is specially sheared, or tapped through an annealing procedure, lattices may self-organize. In this work we study granular crystallization induced by magnetic cohesion. We observe an interesting granular polymorphism probably due to an effective van der Waals-like interaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hales T.C.: The sphere packing problem. J. Comput. Appl. Math. 44, 41–76 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  2. Hales T.C.: A proof of the Kepler conjecture. Ann. Math. 162, 1065–1185 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  3. Hales T.C.: A formulation of the Kepler conjecture. Discrete Comput. Geom. 36, 21–69 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  4. Nykypanchuk D., Maye M.M., Van der Lelie D., Gang O.: DNA-guided crystallization of colloidal particles. Nature 451, 549–552 (2008)

    Article  ADS  Google Scholar 

  5. Scott G.D.: Packing spheres: packing of equal spheres. Nature 188, 908–909 (1960)

    Article  ADS  MATH  Google Scholar 

  6. Bernal J.D., Finney J.L.: Random packing of spheres in non-rigid containers. Nature 214, 265–266 (1967)

    Article  ADS  Google Scholar 

  7. Geldart D., Wong A.C.Y.: Fluidization of powders showing degrees of cohesiveness I. Bed expansion. Chem. Eng. Sci. 39, 1481–1488 (1984)

    Article  Google Scholar 

  8. Knight J.B., Fandrich C.G., Lau C.N., Jaeger H.M., Nagel S.R.: Density relaxation in a vibrated granular material. Phys. Rev. E 51, 3957–3963 (1995)

    Article  ADS  Google Scholar 

  9. Albert R., Albert I., Hornbaker D., Schiffer P., Barabsi A.L.: Maximum angle of stability in wet and dry spherical granular media. Phys. Rev. E 56, R6271–R6274 (1997)

    Article  ADS  Google Scholar 

  10. Feng C.L., Yu A.B.: Effect of liquid addition on the packing of mono-sized coarse spheres. Powder Technol. 99, 22–28 (1998)

    Article  MathSciNet  Google Scholar 

  11. Aste, T., Weaire, D.: The Pursuit of Perfect Packing. Institute of Physics, Bristol, Philadelphia (2000)

  12. Aste T.: Variations around disordered close packing. J. Phys. Condens. Matter 17, S2361–S2390 (2005)

    Article  ADS  Google Scholar 

  13. Pouliquen O., Nicolas M., Weidman P.D.: Crystallization of non-Brownian spheres under horizontal shaking. Phys. Rev. Lett. 79, 3640–3643 (1997)

    Article  ADS  Google Scholar 

  14. Nicolas M., Duru P., Pouliquen O.: Compaction of a granular material under cyclic shear. Eur. Phys. J. E 3, 309–314 (2000)

    Article  Google Scholar 

  15. Nahmad-Molinari Y., Ruiz-Surez J.C.: Epitaxial growth of granular single crystals. Phys. Rev. Lett. 89, 264302 (2002)

    Article  ADS  Google Scholar 

  16. Tsai J.C., Voth G.A., Gollub J.P.: Internal granular dynamics, shear-induced crystallization, and compaction steps. Phys. Rev. Lett. 91, 064301 (2003)

    Article  ADS  Google Scholar 

  17. Carvente O., Ruiz-Suárez J.C.: Crystallization of confined non-Brownian spheres by vibrational annealing. Phys. Rev. Lett. 95, 018001 (2005)

    Article  ADS  Google Scholar 

  18. Yu A.B., An X.Z., Zou R.P., Yang R.Y., Kendall K.: Self-assembly of particles for densest packing by mechanical vibration. Phys. Rev. Lett. 97, 265501 (2006)

    Article  ADS  Google Scholar 

  19. Nowak E.R., Knight J.B., Ben-Naim E., Jaeger H.M., Nagel S.R.: Density fluctuations in vibrated granular materials. Phys. Rev. E 57, 1971 (1998)

    Article  ADS  Google Scholar 

  20. Carvente O., Ruiz-Suárez J.C.: Self-assembling of dry and cohesive non-Brownian spheres. Phys. Rev. E 78, 011302 (2008)

    Article  ADS  Google Scholar 

  21. de Gennes P.G., Pincus P.A.: Pair correlations in a ferromagnetic colloid. Phys. Kondens. Materie 11, 189–198 (1970)

    Article  ADS  Google Scholar 

  22. Klapp S., Forstmann F.: Crystallization of dipolar hard spheres: density functional results. J. Chem. Phys. 109, 1062–1070 (1998)

    Article  ADS  Google Scholar 

  23. Levesque D., Weis J.J.: Orientational and structural order in strongly interacting dipolar hard spheres. Phys. Rev. E 49, 5131–5140 (1994)

    Article  ADS  Google Scholar 

  24. Weis J.J., Levesque D.: Ferroelectric phases of dipolar hard spheres. Phys. Rev. E 48, 3728–3740 (1993)

    Article  ADS  Google Scholar 

  25. Tao R., Sun J.M.: Three-dimensional structure of induced electrorheological solid. Phys. Rev. Lett. 67, 398–401 (1991)

    Article  ADS  Google Scholar 

  26. Wen W., Kun F., Pl K.F., Zheng D.W., Tu K.N.: Aggregation kinetics and stability of structures formed by magnetic microsphere. Phys. Rev. E 59, R4758–R4761 (1999)

    Article  ADS  Google Scholar 

  27. Wen W., Zhang L., Sheng P.: Planar magnetic colloidal crystals. Phys. Rev. Lett. 85, 5464–5467 (2000)

    Article  ADS  Google Scholar 

  28. Blair D.L., Kudrolli A.: Clustering transitions in vibrofluidized magnetized granular materials. Phys. Rev. E 67, 021302 (2003)

    Article  ADS  Google Scholar 

  29. Stambaugh J., Lathrop D.P., Ott E., Losert W.: Pattern formation in a monolayer of magnetic spheres. Phys. Rev. E 68, 026207 (2003)

    Article  ADS  Google Scholar 

  30. Varga I., Yamada H., Kun F., Matuttis H.G., Ito N.: Structure formation in a binary monolayer of dipolar particles. Phys. Rev. E 71, 051405 (2005)

    Article  ADS  Google Scholar 

  31. Forsyth A.J., Hutton S.R., Rhodes M.J., Osborne C.F.: Effect of applied interparticle force on the static and dynamic angles of repose of spherical granular material. Phys. Rev. E 63, 031302 (2001)

    Article  ADS  Google Scholar 

  32. Taylor K., King P.J., Swift R.M.: Influence of magnetic cohesion on the stability of granular slopes. Phys. Rev. E 78, 031304 (2008)

    Article  ADS  Google Scholar 

  33. Forsyth A.J., Hutton S.R., Osborne C.F., Rhodes M.J.: Effects of interparticle force on the packing of spherical granular material. Phys. Rev. Lett. 87, 244301 (2001)

    Article  ADS  Google Scholar 

  34. Lumay G., Vandewalle N.: Tunable random packings. New J. Phys. 9, 406–415 (2007)

    Article  ADS  Google Scholar 

  35. Peters F., Lemaire E.: Cohesion induced by a rotating magnetic field in a granular material. Phys. Rev. E 69, 061302 (2004)

    Article  ADS  Google Scholar 

  36. Fazekas S., Kertsz J., Wolf D.E.: Piling and avalanches of magnetized particles. Phys. Rev. E 71, 061303 (2005)

    Article  ADS  Google Scholar 

  37. Dolivo-Dobrovolskii V.V.: Tetragonal packings of spheres. Crystallogr. Rep. 47, 723–726 (2002)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. C. Ruiz-Suárez.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Carvente, O., Peraza-Mues, G.G., Salazar, J.M. et al. Self-assembling of non-Brownian magnetized spheres. Granular Matter 14, 303–308 (2012). https://doi.org/10.1007/s10035-012-0333-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10035-012-0333-4

Keywords

Navigation