Skip to main content
Log in

Benchmark tests for verifying discrete element modelling codes at particle impact level

  • Original Paper
  • Published:
Granular Matter Aims and scope Submit manuscript

Abstract

Over the past 30 years, the Discrete Element Method (DEM) has rapidly gained popularity as a tool for modelling the behaviour of granular assemblies and is being used extensively in both scientific and industrial applications. However, it is far from clear from reviewing the literature whether the large number of DEM codes have been verified and checked against fundamental benchmark problems. DEM simulates the dynamics of each particle in an assembly by calculating the acceleration resulting from all the contact forces and body forces. It is clearly necessary that such a model be validated or verified by comparing with experimental results, analytical solutions or other numerical results (e.g. Finite Element Analysis (FEA) results) at particle impact level. There appears to be no standard benchmark tests against which DEM codes can be verified. It is thus essential and useful to establish a set of standard benchmark tests to confirm that these DEM codes are modelling the particle dynamics as intended. This paper proposes a set of benchmark tests to verify DEM codes at particle impact level for spherical particles. The analytical solutions derived from elasticity theory for elastic normal collision of two spheres or a sphere with a rigid plane are first reviewed. These analytical solutions apply only to the elastic regime for normal impact. Secondly, the analytical solutions of frictional oblique impact between two spheres or a sphere with a rigid plane are scrutinized and derived. These analytical solutions originate from the dynamics principles and should be satisfied for any DEM contact force model with prescribed friction and restitution coefficients. A set of eight benchmark tests are designed and performed using commercial DEM codes. Test 1 and Test 2 consider the elastic normal impact of two spheres or a sphere with a rigid plane, whereas the other tests (Test 3–Test 8) investigate the energy dissipation due to the collision. These benchmark tests also involve different types of material. The DEM results were compared with the analytical solutions, experimental or FEA results found in the literature. All benchmark tests showed good to excellent match, providing a quantitative verification for the codes used in this study. These benchmark tests not only verify DEM codes but also enhance the understanding of fundamental impact phenomena for modelling a large number of particles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cundall P.A., Strack O.D.L.: Discrete numerical-model for granular assemblies. Geotechnique 29, 47–65 (1979)

    Article  Google Scholar 

  2. Zhu H.P., Yu A.B., Wu Y.H.: Numerical investigation of steady and unsteady state hopper flows. Powder Technol. 170, 125–134 (2006)

    Article  Google Scholar 

  3. Ketterhagen W.R., Curtis J.S., Wassgren C.R., Hancock B.C.: Predicting the flow mode from hoppers using the discrete element method. Powder Technol. 195, 1–10 (2009)

    Article  Google Scholar 

  4. Tao H., Baosheng J., Zhong W.Q, Wang X.F., Ren B., Zhang Y., Xiao R.: Discrete element method modeling of non-spherical granular flow in rectangular hopper. Chem. Eng. Process. 49, 151–158 (2010)

    Article  Google Scholar 

  5. Kwan C.C., Mio H., Chen Y.Q., Ding Y.L., Saito F., Papadopoulos D.G., Bentham A.C., Ghadiri M.: Analysis of the milling rate of pharmaceutical powders using the Distinct Element Method (DEM). Chem. Eng. Sci. 60, 1441–1448 (2005)

    Article  Google Scholar 

  6. Yang R.Y., Jayasundara C.T., Yu A.B., Curry D.: DEM simulation of the flow of grinding media in IsaMill. Miner. Eng. 19, 984–994 (2006)

    Article  Google Scholar 

  7. Cleary P.W., Sinnott M.D., Morrison R.D.: DEM prediction of particle flows in grinding processes. Int. J. Numer. Methods Fluids 58, 319–353 (2008)

    Article  ADS  MATH  Google Scholar 

  8. Müller C.R., Holland D.J., Sederman A.J., Scott S.A., Dennis J.S., Gladden L.F.: Granular temperature: comparison of magnetic resonance measurements with discrete element model simulations. Powder Technol. 184, 241–253 (2008)

    Article  Google Scholar 

  9. Chu K.W., Wang B., Yu A.B., Vince A.: CFD-DEM modelling of multiphase flow in dense medium cyclones. Powder Technol. 193, 235–247 (2009)

    Article  Google Scholar 

  10. Maio F.P.D., Renzo A.D., Trevisan D.: Comparison of heat transfer models in DEM-CFD simulations of fluidized beds with an immersed probe. Powder Technol. 193, 257–265 (2009)

    Article  Google Scholar 

  11. Lu L.S., Hsiau S.S.: Mixing in a vibrated granular bed: diffusive and convective effects. Powder Technol. 184, 31–43 (2008)

    Article  Google Scholar 

  12. Majid M., Walzel P.: Convection and segregation in vertically vibrated granular beds. Powder Technol. 192, 311–317 (2009)

    Article  Google Scholar 

  13. Naeini S.E., Spelt J.K.: Two-dimensional discrete element modeling of a spherical steel media in a vibrating bed. Powder Technol. 195, 83–90 (2009)

    Article  Google Scholar 

  14. Luding S.: Cohesive, frictional powders: contact models for tension. Granul. Matter 10, 235–246 (2008)

    Article  MATH  Google Scholar 

  15. Härtl J., Ooi J.Y.: Experiments and simulations of direct shear tests: porosity, contact friction and bulk friction. Granul. Matter 10, 263–271 (2008)

    Article  MATH  Google Scholar 

  16. Chung Y.C., Ooi J.Y.: A study of influence of gravity on bulk behaviour of particulate solid. Particuology 6, 467–474 (2008)

    Article  Google Scholar 

  17. Holst J.M.F.G., Ooi J.Y., Rotter J.M., Rong G.H.: Numerical modeling of silo filling. I: continuum analyses. J. Eng. Mech. 125, 94–103 (1999)

    Article  Google Scholar 

  18. Holst J.M.F.G., Rotter J.M., Ooi J.Y., Rong G.H.: Numerical modeling of silo filling. II: discrete element analyses. J. Eng. Mech. 125, 104–110 (1999)

    Article  Google Scholar 

  19. Timoshenko S.P., Goodier J.N.: Theory of Elasticity. 3rd edn. McGraw-Hill, New York (1970)

    MATH  Google Scholar 

  20. Hertz H.: Miscellaneous Papers. McMillan, New York (1896)

    MATH  Google Scholar 

  21. Maw N., Barber J.R., Fawcett J.N.: The oblique impact of elastic spheres. Wear 38, 101–114 (1976)

    Article  Google Scholar 

  22. Mindlin R.D., Deresiewicz H.: Elastic spheres in contact under varying oblique forces. J. Appl. Mech. (Trans. ASME) 20, 327–344 (1953)

    MathSciNet  MATH  Google Scholar 

  23. Vu-Quoc L., Zhang X., Lesburg L.: Normal and tangential force-displacement relations for frictional elasto-plastic contact of spheres. Int. J. Solids Struct. 38, 6455–6489 (2001)

    Article  MATH  Google Scholar 

  24. Zhang X., Vu-Quoc L.: Modeling the dependence of the coefficient of restitution on the impact velocity in elasto-plastic collisions. Int. J. Impact Eng. 27, 317–341 (2002)

    Article  Google Scholar 

  25. Wu C.Y., Thornton C., Li L.Y.: Coefficients of restitution for elastoplastic oblique impacts. Adv. Powder Technol. 14, 435–448 (2003)

    Article  Google Scholar 

  26. Vu-Quoc L., Zhang X.: An elastoplastic contact force-displacement model in the normal direction: displacement-driven version. Proc. R. Soc. Lond. Ser. A 455, 4013–4044 (1999)

    Article  ADS  MATH  Google Scholar 

  27. Vu-Quoc L., Lesburg L., Zhang X.: An accurate tangential force-displacement model for granular-flow simulations: contacting spheres with plastic deformation, force-driven formulation. J. Comput. Phys. 196, 298–326 (2004)

    Article  ADS  MATH  Google Scholar 

  28. Zhang X., Vu-Quoc L.: An accurate elasto-plastic frictional tangential force-displacement model for granular flow simulations: displacement-driven formulation. J. Comput. Phys. 225, 730–752 (2007)

    Article  ADS  MATH  Google Scholar 

  29. Foerster S.F., Louge M.Y., Chang H., Allia K.: Measurements of the collision properties of small spheres. Phys. Fluids 6, 1108–1115 (1994)

    Article  ADS  Google Scholar 

  30. Kharaz A.H., Gorham D.A., Salman A.D.: An experimental study of the elastic rebound of spheres. Powder Technol. 120, 281–291 (2001)

    Article  Google Scholar 

  31. Plantard G., Papini M.: Mechanical and electrical behaviors of polymer particles: Experimental study of the contact area between two particles.Experimental validation of a numerical model. Granul. Matter 7, 1–12 (2005)

    Article  Google Scholar 

  32. Tsuji Y., Tanaka T., Ishida T.: Lagrangian numerical-simulation of plug flow of cohesionless particles in a horizontal pipe. Powder Technol. 71, 239–250 (1992)

    Article  Google Scholar 

  33. Itasca Consulting Group Inc. PFC3D–Particle Flow Code in Three Dimensions, Version 3.0. Minneapolis, USA (2003)

  34. DEM Solutions Ltd. EDEM Discrete Element Code, Beta Version. Edinburgh, UK (2005). (http://www.dem-solutions.com/)

  35. Chung,Y.C.: Discrete element modelling and experimental validation of a granular solid subject to different loading conditions. PhD Thesis, University of Edinburgh, Edinburgh, UK (2006)

  36. Walton O.R.: Numerical simulation of inelastic, frictional particle–particle interactions. In: Roco, M.C. (eds) Particulate Two-Phase Flow, pp. 884–911. Butterworth-Heinemann, Boston (1993)

    Google Scholar 

  37. Vu-Quoc L., Zhang X.: An accurate and efficient tangential force-displacement model for elastic frictional contact in particle-flow simulations. Mech. Mater. 31, 235–269 (1999)

    Article  Google Scholar 

  38. Meriam J.L., Kraige L.G.: Engineering Mechanics-Dynamics. Wiley, New York (2003)

    Google Scholar 

  39. Ning, Z., Ghadiri, M.: Incorporation of Rayleigh damping into TRUBAL and determination of the critical time step. (1996)

  40. Renzo A.D., Maio F.P.D.: Comparison of contact-force models for the simulation of collisions in DEM-based granular flow codes. Chem. Eng. Sci. 59, 525–541 (2004)

    Article  Google Scholar 

  41. Johnson K.L.: Contact Mechanics. Cambridge University Press, Cambridge (1985)

    MATH  Google Scholar 

  42. Thornton C., Randall C.W.: Applications of theoretical contact mechanics to solid particle system simulation. In: Satake, M., Jenkins, J.T. (eds) Micromechanics of Granular Materials, pp. 133–142. Elsevier, Amsterdam (1988)

    Google Scholar 

  43. Thornton C., Ning Z., Wu C.Y., Nasrullah M., Li L.Y.: Contact mechanics and coefficients of restitution. In: Poschel, T., Luding, S. (eds) Granular Gases, pp. 55–66. Springer, Berlin (2001)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. C. Chung.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chung, Y.C., Ooi, J.Y. Benchmark tests for verifying discrete element modelling codes at particle impact level. Granular Matter 13, 643–656 (2011). https://doi.org/10.1007/s10035-011-0277-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10035-011-0277-0

Keywords

Navigation