Skip to main content
Log in

FE-investigations of micro-polar boundary conditions along interface between soil and structure

  • Published:
Granular Matter Aims and scope Submit manuscript

Abstract

The interface between granular bodies and structures is analysed with the finite element method and a micro-polar hypoplastic constitutive model. Quasi-static shearing of an infinitely long and narrow granular strip between two rigid walls of different roughness under conditions of free dilatancy and constant vertical pressure is investigated. The constitutive model can reproduce the essential features of granular bodies during shear localization. To model the different roughness of the interface, micro-polar boundary conditions are proposed taking into account the asperity of the wall roughness and grain diameter. Some emphasis is given to the influence of the wall roughness on the thickness of shear zone and the mobilization of wall friction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Tejchman J., Wu W.: Experimental and numerical study of sand-steel interfaces. Int. J. Numer. Anal. Methods Geomech. 19(8), 513–537 (1995)

    Article  Google Scholar 

  2. Tejchman J., Bauer E.: FE-simulations of a direct and a true simple shear test within a polar hypoplasticity. Comput. Geotech. 21(1), 1–16 (2005)

    Article  Google Scholar 

  3. de Gennaro V., Frank R.: Elasto-plastic analysis of the interface behavior between granular media and structure. Comput. Geotech. 29, 547–572 (2002)

    Article  Google Scholar 

  4. Tejchman J.: Influence of a characteristic length on shear zone thickness in hypoplasticity with different enhancements. Comput. Geotech. 31(8), 595–611 (2004)

    Article  Google Scholar 

  5. Maier, T.: Numerische Modellierung der Entfestigung im Rahmen der Hypoplastizität. PhD Thesis, University of Dortmund (2002)

  6. Pena A.A., Herrmann H.J., Lizcano A., Alonso-Marroquin F.: Investigation of the asymptotic states of granular materials using a discrete model of anisotropic particles. In: Garcia-Rojo, R., Herrmann, H.J., McNamara, S. (eds) Powders and Grains., pp. 697–700. Taylor and Francis, London (2005)

    Google Scholar 

  7. Thornton C., Zhang L.: A numerical examination of shear banding and simple shear non-coaxial flow rules. Philos. Mag. 86(21–22), 3425–3452 (2006)

    Article  ADS  Google Scholar 

  8. Alonso-Marroquin F., Vardoulakis I., Herrmann H.J., Weatherley D., Mora P.: Effect of rolling on dissipation in fault gouge. Phys. Rev. E 74, 1–10 (2006)

    Article  Google Scholar 

  9. Potyondy J.G.: Skin friction between various soils and construction materials. Geotechnique 4, 339–353 (1961)

    Google Scholar 

  10. Sondermann W.: Spannungen und Verformungen bei bewehrter Erde. Mitteilungen des Institutes für Grundbau, Universität Braunschweig, Braunschweig (1983)

  11. Desai C.S., Drumm E.C., Zaman M.M.: Cyclic testing and modeling of interfaces. J. Geotech. Eng. ASCE 111, 6 (1985)

    Google Scholar 

  12. Boulon, M.: Numerical and physical modeling of piles behaviour under monotonous and cyclic loading. In: Modelling Soil–Water–Structure Interactions, pp. 285–293. Balkema (1988)

  13. Hassan, A.H.: Etude experimentale et numerique du comportement local et global d’une interface sol granulaire structure. Phd Thesis, Grenoble University (1995)

  14. Neuffer, F., Leibnitz, A.: Über den Gleitwiderstand zwischen Erdstoffen und Bauwerksflächen. In: Bericht aus der Bauforschung, pp. 37. Heft (1964)

  15. Yoshimi, Y., Kishida, T.: Friction between sand and metal surface. In: Proceedings of the 10th ICSMFE, vol. 1, pp. 831–834 (1981)

  16. Huck, P.J., Saxena, S.K.: Response of soil-concrete interface at high pressure. In: Proceedings of the 10th ICSMFE, vol. 2, pp. 141–144 (1981)

  17. Löffelmann F.: Theoretische und experimentelle Untersuchungen zur Schüttgut-Wand-Wechselwirkung und zum Mischen und Entmischen von Granulaten. Publication Series of the Institut für Mechanische Verfahrenstechnik, Universität Karlsruhe, Karlsruhe (1989)

  18. Brumund W.F., Leonards G.A.: Experimental study of static and dynamic friction between sand and typical construction materials. J. Test. Eval. 1, 162–165 (1973)

    Article  Google Scholar 

  19. Kishida H., Uesugi M.: Tests of the interface between sand and steel in the simple shear apparatus. Geotechnique 37, 45–52 (1987)

    Article  Google Scholar 

  20. Uesugi, M.: Friction between Dry Sand and Construction. PhD thesis, Tokyo Institute of Technology (1987)

  21. Becker M., Lippmann H.: Plane plastic flow of granular model material. Arch. Mech. 29, 829–846 (1977)

    Google Scholar 

  22. Haaker, G.: Measurement of wall friction and wear in bulk solids handling. In: Proceeding of the International Conference On Silos-Forschung und Praxis, Tagung 88, Karlsruhe, pp. 389–405 (1988)

  23. Fakharian K., Evgin E.: An automated apparatus for three-dimensional monotonic and cyclic testing of interfaces. Geot. Test. J. ASTM 19(1), 22–31 (1996)

    Google Scholar 

  24. Lerat P.: Etude de l’interface sol-structure dans les milieux granulaires a’ l’aide d’un nouvel appareil de cisaillement annulaire. These de Doctorat de l’Ecole Nationale des Ponts et Chausse’es, Paris (1996)

  25. Vesic A.S.: bearing capacity theory from experiments. J. Soil Mech. Found. Eng. ASCE 99, 575–577 (1973) Discussion

    Google Scholar 

  26. Wernick E.: Tragfähigkeit zylindrischer Anker in Sand unter besonderer Berücksichtigung des Dilatanzverhaltens. pp. 75. Publication Series of the Institute for Rock and Soil Mechanics, University Karlsruhe, Karlsruhe (1978)

  27. Tejchman J.: Scherzonenbildung und Verspannungseffekte in Granulaten unter Berücksichtigung von Korndrehungen. Publ. Ser. Inst. Soil and Rock Mech. (University Karlsruhe) 117, 1–236 (1989)

    Google Scholar 

  28. Unterreiner P., Vardoulakis I., Boulon M., Sulem J.: Essential features of a cosserat continuum in interfacial localisation. In: Chambon, R., Desrues, J., Vardoulakis, I. (eds) Localisation and Bifurcation Theory for Soils and Rocks, pp. 141–155. Balkema, Amsterdam (1994)

    Google Scholar 

  29. Unterreiner, P.: Contribution a l’etude et al la modelisation numerique des sols cloues: application au calcul en deformation des ouvrages de soutenement. PhD thesis, Ecole Nationale des Ponts et Chaussees (1994)

  30. Vardoulakis I., Shah K.R., Papanastasiou P.: Modelling of tool-rock shear interfaces using gradient-dependent flow theory of plasticity. Int. J. Rock Mech. Min. Sci. Geomech. 29(6), 573–582 (1992)

    Article  Google Scholar 

  31. Tejchman J.: Shearing of an infinite narrow granular layer between two boundaries. In: Mühlhaus, H.B. (eds) Bifurcation and Localisation Theory in Geomechanics, pp. 95–103. Swets & Zeitlinger, Lisse (2001)

    Google Scholar 

  32. Huang W., Bauer E., Sloan S.W.: Behaviour of interfacial layer along granular soil-structure interfaces. Struct. Eng. Mech. 15(3), 315–329 (2003)

    Google Scholar 

  33. Lade P.V.: Elasto-plastic stress-strain theory for cohesionless soil with curved yield surfaces. Int. J. Solid Struct. 13, 1019–1035 (1977)

    Article  MATH  Google Scholar 

  34. Vermeer P.: A five-constant model unifying well-established concepts. In: Gudehus, G., Darve, F., Vardoulakis, I. (eds) Proceedings of the International Workshop on Constitutive Relations for Soils, pp. 175–197. Balkema, Amsterdam (1982)

    Google Scholar 

  35. Pestana J.M., Whittle A.J.: Formulation of a unified constitutive model for clays and sands. In. J. Num. Anal. Meth. Geomech. 23, 1215–1243 (1999)

    Article  MATH  Google Scholar 

  36. Desrues J., Chambon R.: Shear band analysis for granular materials: the question of incremental linearity. Ingen. Arch. 59, 187–196 (1989)

    Article  Google Scholar 

  37. Darve F., Flavigny E., Megachou M.: Yield surfaces and principle of superposition revisited by incrementally non-linear constitutive relations. Int. J. Plast. 11(8), 927–948 (1995)

    Article  MATH  Google Scholar 

  38. Kolymbas D.: A rate-dependent constitutive equation for soils. Mech. Res. Comm. 6, 367–372 (1977)

    Article  Google Scholar 

  39. Wu W.: Hypoplastizität als mathematisches Modell zum mechanischen Verhalten granularer Stoffe. pp. 129. Publication Series of the Institute of Soil and Rock Mechanics, University Karlsruhe, Karlsruhe (1992)

  40. Gudehus G.: A comprehensive constitutive equation for granular materials. Soils Found. 36(1), 1–12 (1996)

    Google Scholar 

  41. Bauer E.: Calibration of a comprehensive hypoplastic model for granular materials. Soils Found. 36(1), 13–26 (1996)

    Google Scholar 

  42. von Wolffersdorff P.A.: A hypoplastic relation for granular materials with a predefined limit state surface. Mech. Cohesive Frict. Mater. 1, 251–271 (1996)

    Article  Google Scholar 

  43. Wang C.C.: A new representation theorem for isotropic functions. J. Rat. Mech. Anal. 36, 166–223 (1970)

    Article  MATH  Google Scholar 

  44. Tejchman J., Wu W.: FE-investigations of non-coaxiality and stress-dilatancy rule in dilatant granular bodies within micro-polar hypoplasticity. Int. J. Numer. Anal. Methods Geomech. 33(1), 117–142 (2009)

    Article  Google Scholar 

  45. Chambon R.: Une classe de lois de compartement incrementelement non lineaire pour les sols non visqueux, resolution de quelques problemes de coherences. C.R. Acad. Sci 308, 1571–1576 (1989)

    MATH  Google Scholar 

  46. Wu W., Niemunis A.: Failure criterion, flow rule and dissipation function derived from hypoplasticity. Mech. Cohesive Frict. Mater. 1, 145–163 (1996)

    Article  Google Scholar 

  47. Herle I., Gudehus G.: Determination of parameters of a hypoplastic constitutive model from properties of grain assemblies. Mech. Cohesive Frict. Mater. 4(5), 461–486 (1999)

    Article  Google Scholar 

  48. Wu W., Kolymbas D.: Hypoplasticity then and now. In: Kolymbas, D. (eds) Constitutive Modeling of Granular Materials, pp. 57–105. Springer, Heidelberg (2000)

    Google Scholar 

  49. Tamagnini C., Viggiani C., Chambon R.: A review of two different approaches to hypoplasticity. In: Kolymbas, D. (eds) Constitutive Modeling of Granular Materials, pp. 107–145. Springer, Heidelberg (2000)

    Google Scholar 

  50. Niemunis A., Herle I.: Hypoplastic model for cohesionless soils with elastic strain range. Mech. Cohesive Frict. Mate. 2, 279–299 (1997)

    Article  Google Scholar 

  51. Bauer E., Huang W., Wu W.: Investigations of shear banding in an anisotropic hypoplastic material. Int. J. Solids Struct. 41, 5903–5919 (2004)

    Article  MATH  Google Scholar 

  52. Tejchman J., Niemunis A.: FE-studies on shear localization in an anisotropic micro-polar hypoplastic granular material. Granul Matter 8(3–4), 205–221 (2006)

    Article  Google Scholar 

  53. Tejchman J., Wu W.: Modeling of textural anisotropy in granular materials with stochastic micro-polar hypoplasticity. Int. J. Non-linear Mech. 42, 882–894 (2007)

    Article  ADS  Google Scholar 

  54. Gudehus G.: Seismo-hypoplasticity with a granular temperature. Granul. Matter 8, 93–102 (2006)

    Article  MATH  Google Scholar 

  55. Tejchman J., Wu W.: FE-investigations of shear localization in granular bodies under high shear rate. Granul. Matter 11(2), 115–128 (2009)

    Article  MATH  Google Scholar 

  56. Tejchman J.: Effect of grain crushing on shear localization in granular bodies within micro-polar hypoplasticity. Using DEM. Arch. Hydro-Eng. Environ. Mech. 57(1–2), 3–30 (2010)

    Google Scholar 

  57. Herle I., Kolymbas D.: Hypoplasticity for soils with low friction angles. Comput. Geotech. 31, 365–373 (2004)

    Article  Google Scholar 

  58. Masin D.: A hypoplastic constitutive model for clays. Int. J. Numer. Anal. Meths. Geomech. 29, 311–336 (2005)

    Article  MATH  Google Scholar 

  59. Huang W.-X., Wu W., Sun D.A., Sloan S.: A simple hypoplastic model for normally consolidated clay. Acta Geotech. 1, 15–27 (2006)

    Article  Google Scholar 

  60. Oda M.: Micro-fabric and couple stress in shear bands of granular materials. In: Thornton, C. (eds) Powders and Grains, pp. 161–167. Balkema, Rotterdam (1993)

    Google Scholar 

  61. Pasternak E., Mühlhaus H.-B.: Cosserat continuum modelling of granulate materials. In: Valliappan, S., Khalili, N. (eds) Computational Mechanics: New Frontiers for New Millennium, pp. 1189–1194. Elsevier, Amsterdam (2001)

    Google Scholar 

  62. Mühlhaus H.-B.: Continuum models for layered and blocky rock. In: Hudson, J.A., Fairhurst, Ch. (eds) Comprehensive Rock Engineering, vol. 2, pp. 209–231. Pergamon Press, Oxford (1990)

    Google Scholar 

  63. Schäfer H.: Versuch einer Elastizitätstheorie des zweidimensionalen ebenen Cosserat-Kontinuums. In: Berlin, W. (eds) Miszellaneen der Angewandten Mechanik, Festschrift Tolmien, Akademie- Verlag, Berlin (1962)

    Google Scholar 

  64. Günther W.: Zur Statik und Kinematik des Cosserat-Kontinuums. Abhandlungen der Braunschweigschen Wissenschaftlichen Gesellschaft 10, 195–213 (1958)

    MATH  Google Scholar 

  65. Tejchman J., Gudehus G.: Shearing of a narrow granular strip with polar quantities. Int. J. Num. Anal. Methods Geomech. 25, 1–28 (2001)

    Article  MATH  Google Scholar 

  66. Tejchman J.: Modelling of shear localisation and autogeneous dynamic effects in granular bodies. Publ. Ser. Inst. Soil Rock Mech. (University Karlsruhe) 140, 1–353 (1997)

    Google Scholar 

  67. Tejchman J.: FE modeling of shear localization in granular bodies with micro-polar hypoplasticity. In: Wu, W., Borja, R. (eds) Springer Series in Geomechanics and Geoengineering, Springer, Berlin (2008)

    Google Scholar 

  68. Bathe K.-J.: Finite Element Procedures in Engineering Analysis. Prentice-Hall, Englewood Cliffs (1982)

    Google Scholar 

  69. Widulinski L., Kozicki J., Tejchman J.: Numerical simulation of a triaxial test for sand using a discrete element method. Arch. Hydro Environ. Eng. 56(3–4), 3–26 (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Tejchman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tejchman, J., Wu, W. FE-investigations of micro-polar boundary conditions along interface between soil and structure. Granular Matter 12, 399–410 (2010). https://doi.org/10.1007/s10035-010-0191-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10035-010-0191-x

Keywords

Navigation