Skip to main content
Log in

3D Imaging of particle motion during penetrometer testing

From microscopic to macroscopic soil mechanics

  • Published:
Granular Matter Aims and scope Submit manuscript

Abstract

We present the results of direct observation of material rearrangement due to penetration of a solid rod (penetrometer) through a granular medium. Two different techniques and their advantages are discussed in this paper. We investigate the motion of material within the bulk around the rod. Transparent, polydisperse, and irregularly shaped silica particles immersed in index matching fluid are used for detailed imaging of the interior of a granular pile. Motion of material is observed by confocal microscopy from the bottom boundary up to 100 particle diameters in height. Image analysis indicates that rearrangements spread furthest not directly under the penetrometer but in a ring around the penetrometer. In addition, the direction of preformed stress chains in the material influences the particle rearrangements. Material compressed from one side exhibits anisotropic particle rearrangements under penetrometer testing. Laser sheet scanning allows for direct imaging of individual particle motion with greater accuracy, but works best for spherical particles only.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bolton M. (1979). A Guide to Soil Mechanics. Macmillan Education Ltd, New York

    Google Scholar 

  2. Friedmann, S.J., Kwon, G., Losert, W.: Granular mem- ory and its effect on the triggering and distribution of rock avalanche events. J. Geophys. Res. 108(B8), ECV8–1–11 (2005)

    Google Scholar 

  3. Geng J., Howell D., Longhi E., Behringer R.P. (2001). Footprints in sand: the response of a granular material to local perturbations. Phys. Rev. Lett. 87(3): 03556

    Article  Google Scholar 

  4. Hill K.M., Kakalios J. (1997). Axial segregation of granular media rotated in a drum mixer: pattern evolution. Phys. Rev. E. 56(4): 4386–4393

    Article  ADS  Google Scholar 

  5. Iskander M.G., Liu J., Sadek S. (2002). Transparent amorphous silica to model clay. J. Geotech. Geoenviron. 128(3): 262–273

    Article  Google Scholar 

  6. Khakhar D.V., Orpe A.V., Hajra S.K. (2003). Segregation of granular materials in rotating cylinders. Physica A 318(1-2): 129–136

    Article  ADS  Google Scholar 

  7. Louge M.Y. (2003). Model for dense granular flows down bumpy inclines. Phys. Rev. E. 67(6): 61303/1–61303/11

    Article  ADS  Google Scholar 

  8. Majmudar T.S., Behringer R.P. (2005). Contact force measurements and stress-induced anisotropy in granular materials. Nature 435(7045): 1079–1082

    Article  ADS  Google Scholar 

  9. MiDi G. (2004). On dense granular flows. Eur. Phys. J. E. 14: 341–365

    Article  Google Scholar 

  10. Sadek S., Iskander M.G., Liu J. (2003). Accuracy of digital image correlation for measuring deformations in transparent media. J. Comput. Civil. Eng. 17: 88–96

    Article  Google Scholar 

  11. Stone, M.B., Barry, R., Bernstein, D.P., Pelc, M.D., Tsui, Y.K., Schiffer, P.: Local jamming via penetration of a granular medium. Phys. Rev. E. 70(4), 41301–1–10 (2004)

    Google Scholar 

  12. Stone M.B., Bernstein D.P., Barry R., Pelc M.D., Tsui Y., Schiffer P. (2004). Getting to the bottom of granular medium. Nature 427: 503–504

    Article  ADS  Google Scholar 

  13. Stone, M.B., Bernstein, D.P., Barry, R., Pelc, M.D., Tsui, Y.,Schiffer, P.: Unpublished (2004)

  14. Terzaghi K., Peck R.B. (1967). Soil Mechanics in Engineering Practice, 2nd edn. Wiley, New York

    Google Scholar 

  15. Toiya M., Stambaugh J., Losert W. (2004). Transient and oscillatory granular shear flow. Phys. Rev. Lett. 93(8): 088001/1–088001/4

    Article  ADS  Google Scholar 

  16. Tsai J.C., Voth G.A., Gollub J.P. (1999). Mixing of granular materials: a test-bed for dynammical system for pattern formation. Phys. Rev. Lett. 9(8): 1467–1484

    Google Scholar 

  17. Utter B., Behringer R.P. (2004). Self-diffusion in dense gran- ular shear flows. Phys. Rev. E. 69(3): 31308/1–31308/12

    Article  ADS  Google Scholar 

  18. van den Berg P. (1994). Analysis of Soil Penetration. Delft University Press, Delft

    Google Scholar 

  19. Vanel L., Howell D., Clark D., Behringer R.P., Clement E. (1999). Memories in sand: experimental tests of construction history of stress distributions under sandpiles. Phys. Rev. E. 60: R5040–R5043

    Article  ADS  Google Scholar 

  20. Welker A.L., Bowders J.J., Gilbert R.B. (1999). Applied research using a transparent material with hydraulic properties similar to soil. Geotech. Test. J. 22(3): 266–270

    Article  Google Scholar 

  21. Yu H.S., Mitchell J.K. (1998). Analysis of cone resistance: review of methods. J. Geotech. Geoenviron. 124: 140–149

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masahiro Toiya.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Toiya, M., Hettinga, J. & Losert, W. 3D Imaging of particle motion during penetrometer testing. Granular Matter 9, 323–329 (2007). https://doi.org/10.1007/s10035-007-0044-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10035-007-0044-4

Keywords

Navigation