Skip to main content

Advertisement

Log in

The Relationship Between Phytoplankton Diversity and Ecosystem Functioning Changes with Disturbance Regimes in Tropical Reservoirs

  • Published:
Ecosystems Aims and scope Submit manuscript

Abstract

The relationship between species diversity and ecosystem functioning is one of central topics in modern ecology, but variable and controversial patterns have been found depending on ecosystem type, organism type and scale. Such patterns call for mechanistic exploration within an integrative modelling framework. Lakes, especially reservoirs, are highly disturbed ecosystems, and the relationships between species diversity and ecosystem functioning likely differ from those of terrestrial ecosystems. Disturbance can have a great impact on local diversity and resource use efficiency (RUE) of phytoplankton assemblages and thereby influence these relationships. To elucidate how disturbance influences the diversity of phytoplankton and its relationship with ecosystem functioning, we analysed datasets from two groups of waterbodies (large-sized reservoirs and small-sized reservoirs) subjected to different disturbance regimes. We also investigated the mechanisms potentially underlying the relationships using structural equation modelling. A unimodal relationship between species richness and productivity was found in large-sized reservoirs and in small-sized reservoirs in dry seasons, while a positive linear relationship was detected in small-sized reservoirs in wet seasons. Cyanobacteria dominance increased the RUE of phytoplankton and decreased its evenness more significantly in large-sized reservoirs than in small reservoirs. The effects of water temperature and resources availability (TP) on species richness also changed with disturbance regimes. Disturbance is an important factor modifying the responses of phytoplankton communities to environmental gradients, and disturbance regimes at regional scale can largely shape the relationship between phytoplankton diversity and ecosystem functioning.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

Data Availability

Data for reservoir and water quality data are available in the supplementary materials, and the other metadata are deposited as Dryad Dataset, https://doi.org/10.5061/dryad.rbnzs7hf3.

References

  • Abrams PA. 1995. Monotonic or Unimodal Diversity-Productivity Gradients: What Does Competition Theory Predict? Ecology 76:2019–2027.

    Article  Google Scholar 

  • Adler PB, Seabloom EW, Borer ET, Hillebrand H, Hautier Y, Hector A, Harpole WS, O’Halloran LR, Grace JB, Anderson TM, Bakker JD, Biederman LA, Brown CS, Buckley YM, Calabrese LB, Chu C-J, Cleland EE, Collins SL, Cottingham KL, Crawley MJ, Damschen EI, Davies KF, DeCrappeo NM, Fay PA, Firn J, Frater P, Gasarch EI, Gruner DS, Hagenah N, Hille Ris Lambers J, Humphries H, Jin VL, Kay AD, Kirkman KP, Klein JA, Knops JMH, La Pierre KJ, Lambrinos JG, Li W, MacDougall AS, McCulley RL, Melbourne BA, Mitchell CE, Moore JL, Morgan JW, Mortensen B, Orrock JL, Prober SM, Pyke DA, Risch AC, Schuetz M, Smith MD, Stevens CJ, Sullivan LL, Wang G, Wragg PD, Wright JP, Yang LH. 2011. Productivity Is a Poor Predictor of Plant Species Richness. Science 333:1750–1753.

    Article  CAS  PubMed  Google Scholar 

  • Aka M, Pagano M, Saint-Jean L, Arfi R, Bouvy M, Cecchi P, Corbin D, Thomas S. 2000. Zooplankton Variability in 49 Shallow Tropical Reservoirs of Ivory Coast (West Africa). International Review of Hydrobiology 85:491–504.

    Article  Google Scholar 

  • Al-Mufti MM, Sydes CL, Furness SB, Grime JP, Band SR. 1977. A Quantitative Analysis of Shoot Phenology and Dominance in Herbaceous Vegetation. Journal of Ecology 65:759–791.

    Article  Google Scholar 

  • Ansari AA, Singh Gill S, Lanza GR, Rast W, Eds. 2011. Eutrophication: causes, consequences and control. Netherlands, Dordrecht: Springer.

    Google Scholar 

  • APHA. 2012. Standard Methods for the Examination of Water and Wastewater, 22nd edn. Washington, DC: American Water Works Association and Water Pollution Control Federation.

    Google Scholar 

  • Arhonditsis GB, Stow CA, Steinberg LJ, Kenney MA, Lathrop RC, McBride SJ, Reckhow KH. 2006. Exploring ecological patterns with structural equation modeling and Bayesian analysis. Ecological Modelling 192:385–409.

    Article  Google Scholar 

  • Butterwick C, Heaney SI, Talling JF. 2005. Diversity in the influence of temperature on the growth rates of freshwater algae, and its ecological relevance. Freshwater Biology 50:291–300.

    Article  Google Scholar 

  • Caputo L, Naselli-Flores L, Ordoñez J, Armengol J. 2008. Phytoplankton distribution along trophic gradients within and among reservoirs in Catalonia (Spain). Freshwater Biology 53:2543–2556.

    Article  CAS  Google Scholar 

  • Cardinale BJ, Hillebrand H, Harpole WS, Gross K, Ptacnik R. 2009a. Separating the influence of resource ‘availability’ from resource ‘imbalance’ on productivity–diversity relationships. Ecology Letters 12:475–487.

    Article  PubMed  Google Scholar 

  • Cardinale BJ, Palmer MA, Brooks AR, Ivess S. 2005. Diversity-Productivity Relationships in Streams Vary as a Function of the Natural Disturbance Regime. Ecology 86:716–726.

    Article  Google Scholar 

  • Cardinale B, Bennett D, Nelson C, Gross K. 2009b. Does species diversity drive productivity or vice versa? A test of the Multivariate Productivity-Diversity Hypothesis in streams. Ecology 90:1227–1241.

    Article  PubMed  Google Scholar 

  • Connell JH. 1978. Diversity in Tropical Rain Forests and Coral Reefs. Science 199:1302–1310.

    Article  CAS  PubMed  Google Scholar 

  • Connell JH, Orias E. 1964. The Ecological Regulation of Species Diversity. The American Naturalist 98:399–414.

    Article  Google Scholar 

  • Daam MA, Teixeira H, Lillebø AI, Nogueira AJA. 2019. Establishing causal links between aquatic biodiversity and ecosystem functioning: Status and research needs. Science of the Total Environment 656:1145–1156.

    Article  CAS  PubMed  Google Scholar 

  • Dornelas M. 2010. Disturbance and change in biodiversity. Philosophical Transactions of the Royal Society B: Biological Sciences 365:3719–3727.

    Article  Google Scholar 

  • Downing JA, Watson SB, McCauley E. 2001. Predicting Cyanobacteria dominance in lakes. Canadian Journal of Fisheries and Aquatic Sciences 58:1905–1908.

    Article  Google Scholar 

  • Fei S, Jo I, Guo Q, Wardle DA, Fang J, Chen A, Oswalt CM, Brockerhoff EG. 2018. Impacts of climate on the biodiversity-productivity relationship in natural forests. Nature Communications 9:5436.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ferber LR, Levine SN, Lini A, Livingston GP. 2004. Do cyanobacteria dominate in eutrophic lakes because they fix atmospheric nitrogen? Freshwater Biology 49:690–708.

    Article  CAS  Google Scholar 

  • Filstrup CT, Heathcote AJ, Harpole WS. 2014. Cyanobacteria dominance influences resource use efficiency and community turnover in phytoplankton and zooplankton communities. Ecology Letters 17:464–474.

    Article  PubMed  Google Scholar 

  • Filstrup CT, King KBS, McCullough IM. 2019. Evenness effects mask richness effects on ecosystem functioning at macro-scales in lakes. Ecology Letters 22:2120–2129.

    Article  PubMed  Google Scholar 

  • Fraser LH, Jentsch A, Sternberg M. 2014. What drives plant species diversity? A global distributed test of the unimodal relationship between herbaceous species richness and plant biomass. Journal of Vegetation Science 25:1160–1166.

    Article  Google Scholar 

  • Fraser LH, Pither J, Jentsch A, Sternberg M, Zobel M, Askarizadeh D, Bartha S, Beierkuhnlein C, Bennett JA, Bittel A, Boldgiv B, Boldrini II, Bork E, Brown L, Cabido M, Cahill J, Carlyle CN, Campetella G, Chelli S, Cohen O, Csergo A-M, Diaz S, Enrico L, Ensing D, Fidelis A, Fridley JD, Foster B, Garris H, Goheen JR, Henry HAL, Hohn M, Jouri MH, Klironomos J, Koorem K, Lawrence-Lodge R, Long R, Manning P, Mitchell R, Moora M, Muller SC, Nabinger C, Naseri K, Overbeck GE, Palmer TM, Parsons S, Pesek M, Pillar VD, Pringle RM, Roccaforte K, Schmidt A, Shang Z, Stahlmann R, Stotz GC, Sugiyama S-I, Szentes S, Thompson D, Tungalag R, Undrakhbold S, van Rooyen M, Wellstein C, Wilson JB, Zupo T. 2015. Worldwide evidence of a unimodal relationship between productivity and plant species richness. Science 349:302–305.

    Article  CAS  PubMed  Google Scholar 

  • Friedl G, Wüest A. 2002. Disrupting biogeochemical cycles - Consequences of damming. Aquatic Sciences 64:55–65.

    Article  CAS  Google Scholar 

  • Gillman LN, Wright SD. 2006. The Influence of Productivity on the Species Richness of Plants: A Critical Assessment. Ecology 87:1234–1243.

    Article  PubMed  Google Scholar 

  • Grace JB, Adler PB, Harpole WS, Borer ET, Seabloom EW. 2014. Causal networks clarify productivity–richness interrelations, bivariate plots do not. Functional Ecology 28:787–798.

    Article  Google Scholar 

  • Grace JB, Anderson TM, Olff H, Scheiner SM. 2010. On the specification of structural equation models for ecological systems. Ecological Monographs 80:67–87.

    Article  Google Scholar 

  • Grace JB, Anderson TM, Seabloom EW, Borer ET, Adler PB, Harpole WS, Hautier Y, Hillebrand H, Lind EM, Pärtel M, Bakker JD, Buckley YM, Crawley MJ, Damschen EI, Davies KF, Fay PA, Firn J, Gruner DS, Hector A, Knops JMH, MacDougall AS, Melbourne BA, Morgan JW, Orrock JL, Prober SM, Smith MD. 2016. Integrative modelling reveals mechanisms linking productivity and plant species richness. Nature 529:390–393.

    Article  CAS  PubMed  Google Scholar 

  • Graham JH, Duda JJ. 2011. The Humpbacked Species Richness-Curve: A Contingent Rule for Community Ecology. International Journal of Ecology 2011:1–15.

    Article  Google Scholar 

  • Grime JP. 1973a. Control of species density in herbaceous vegetation. Journal of Environmental Management 1:151–167.

    Google Scholar 

  • Grime JP. 1973b. Competitive Exclusion in Herbaceous Vegetation. Nature 242:344–347.

    Article  Google Scholar 

  • Grime JP. 2001. Plant Strategies, Vegetation Processes, and Ecosystem Properties, 2nd edn. Chichester: John Wiley & Sons.

    Google Scholar 

  • Gross K, Cardinale BJ. 2007. Does Species Richness Drive Community Production or Vice Versa? Reconciling Historical and Contemporary Paradigms in Competitive Communities. The American Naturalist 170:207–220.

    Article  PubMed  Google Scholar 

  • Han B-P, Li T, Lin X. 2003. Reservoir eutrophication and its protection in Guangdongprovince. Southern China: Chinese Science Press, Beijing.

    Google Scholar 

  • Hardin G. 1960. The Competitive Exclusion Principle. Science 131:1292–1297.

    Article  CAS  PubMed  Google Scholar 

  • Hautier Y, Niklaus PA, Hector A. 2009. Competition for Light Causes Plant Biodiversity Loss After Eutrophication. Science 324:636–638.

    Article  CAS  PubMed  Google Scholar 

  • Hillebrand H, Dürselen C-D, Kirschtel D, Pollingher U, Zohary T. 1999. Biovolume Calculation for Pelagic and Benthic Microalgae. Journal of Phycology 35:403–424.

    Article  Google Scholar 

  • Hodapp D, Meier S, Muijsers F, Badewien TH, Hillebrand H. 2015. Structural equation modeling approach to the diversity-productivity relationship of Wadden Sea phytoplankton. Marine Ecology Progresses Series 523:31–40.

    Article  Google Scholar 

  • Hox JJ, Bechger TM. 2009. An Introduction in Structural Equation Modeling. Family Science Review 11:354–373.

    Google Scholar 

  • Hu R, Duan X, Peng L, Han B, Naselli-Flores L. 2017. Phytoplankton assemblages in a complex system of interconnected reservoirs: the role of water transport in dispersal. Hydrobiologia 800:17–30.

    Article  Google Scholar 

  • Hu Z, Anderson NJ, Yang X, McGowan S. 2014. Catchment-mediated atmospheric nitrogen deposition drives ecological change in two alpine lakes in SE Tibet. Global Change Biology 20:1614–1628.

    Article  PubMed  Google Scholar 

  • Hubbell SP. 2001. The unified neutral theory of biodiversity and biogeography, Monographs in population biology. Princeton University Press, Princeton.

  • Huisman J, Codd GA, Paerl HW, Ibelings BW, Verspagen JMH, Visser PM. 2018. Cyanobacterial blooms. Nature Reviews Microbiology 16:471–483.

    Article  CAS  PubMed  Google Scholar 

  • Huston MA. 1979. A General Hypothesis of Species Diversity. The American Naturalist 113:81–101.

    Article  Google Scholar 

  • Huston MA. 1997. Hidden treatments in ecological experiments: re-evalutating the ecosystem function of biodiverstiy. Oecologia 110:449–460.

    Article  PubMed  Google Scholar 

  • Huston MA. 2014. Disturbance, productivity, and species diversity: empiricism vs. logic in ecological theory. Ecology 95:2382–2396.

    Article  Google Scholar 

  • Huston MA, DeAngelis DL. 1994. Competition and Coexistence: The Effects of Resource Transport and Supply Rates. The American Naturalist 144:954–977.

    Article  Google Scholar 

  • Hutchinson GE. 1961. The Paradox of the Plankton. The American Naturalist 95: 137–145. The University of Chicago Press, New York.

  • Isvánovics V, Shafik HM, Présing M, Juhos S. 2000. Growth and phosphate uptake kinetics of the cyanobacterium, Cylindrospermopsis raciborskii (Cyanophyceae) in throughflow cultures. Freshwater Biology 43:257–275.

    Article  Google Scholar 

  • Janousek WM, Dreitz VJ. 2020. Testing Huston’s dynamic equilibrium model along fire and forest productivity gradients using avian monitoring data. Diversity and Distributions 26:1715–1726.

    Article  Google Scholar 

  • Jeppesen E, Meerhoff M, Holmgren K, González-Bergonzoni I, Teixeira-de Mello F, Declerck SAJ, DeMeester L, Søndergaard M, Lauridsen TL, Bjerring R, Conde-Porcuna JM, Mazzeo N, Iglesias C, Reizenstein M, Malmquist HJ, Liu Z, Balayla D, Lazzaro X. 2010. Impacts of climate warming on lake fish community structure and potential effects on ecosystem function. Hydrobiologia 646:73–90.

    Article  CAS  Google Scholar 

  • Jeppesen E, Jensen JP, Søndergaard M, Lauridsen T, Landkildehus F. 2000. Trophic structure, species richness and biodiversity in Danish lakes: changes along a phosphorus gradient. Freshwater Biology 45:201–213.

    Article  CAS  Google Scholar 

  • Kâ S, Mendoza-Vera JM, Bouvy M, Champalbert G, N’Gom-Kâ R, Pagano M. 2012. Can tropical freshwater zooplankton graze efficiently on cyanobacteria? Hydrobiologia 679:119–138.

    Article  Google Scholar 

  • Korhonen JJ, Wang J, Soininen J. 2011. Productivity-Diversity Relationships in Lake Plankton Communities. PLoS ONE 6:e22041.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Laanisto L, Hutchings M. 2015. Comment on “Worldwide evidence of a unimodal relationship between productivity and plant species richness.” Science 350:1177b.

    Article  Google Scholar 

  • Lin S-J, He L, Huang P, Han B-P. 2005. Comparison and improvement on the extraction method for chlorophyll a in phytoplankton (In Chinese with English abstract). Ecologic Science 24:9–11.

    Google Scholar 

  • Lisner A, Ottaviani G, Klimešová J, Mudrák O, Martínková J, Lepš J. 2021. The species richness–productivity relationship varies among regions and productivity estimates, but not with spatial resolution. Oikos 130:1704–1714.

    Article  Google Scholar 

  • Lürling M, Eshetu F, Faassen EJ, Kosten S, Huszar VLM. 2013. Comparison of cyanobacterial and green algal growth rates at different temperatures. Freshwater Biology 58:552–559.

    Article  Google Scholar 

  • Miller AD, Roxburgh SH, Shea K. 2011. How frequency and intensity shape diversity–disturbance relationships. Proceedings of the National Academy of Sciences 108:5643–5648.

    Article  CAS  Google Scholar 

  • McCauley E, Briand F. 1979. Zooplankton grazing and phytoplankton species richness: Field tests of the predation hypothesis. Limnology & Oceanography 24:243–252.

    Article  Google Scholar 

  • Morales-Baquero R, Carrillo P, Reche I, Sánchez-Castillo P. 1999. Nitrogen–phosphorus relationship in high mountain lakes: effects of the size of catchment basins. Canadian Journal of Fisheries and Aquatic Sciences 56:1809–1817.

    Article  CAS  Google Scholar 

  • Mittelbach G. 2012. Community ecology. Massachusetts: Sinauer Associates Inc.

    Google Scholar 

  • Mittelbach GG, Steiner CF, Scheiner SM, Gross KL, Reynolds HL, Waide RB, Willig MR, Dodson SI, Gough L. 2001. What Is the Observed Relationship between Species Richness and Productivity? Ecology 82:2381–2396.

    Article  Google Scholar 

  • Morris EK, Caruso T, Buscot F, Fischer M, Hancock C, Maier TS, Meiners T, Müller C, Obermaier E, Prati D, Socher SA, Sonnemann I, Wäschke N, Wubet T, Wurst S, Rillig MC. 2014. Choosing and using diversity indices: insights for ecological applications from the German Biodiversity Exploratories. Ecology and Evolution 4:3514–3524.

    Article  PubMed  PubMed Central  Google Scholar 

  • Naselli-Flores L. 2000. Phytoplankton assemblages in twenty-one Sicilian reservoirs: relationships between species composition and environmental factors. Hydrobiologia 424:1–11.

    Article  CAS  Google Scholar 

  • Naselli Flores L, Barone R. 1994. Relationships between trophic state and plankton community structure in 21 Sicilian dam reservoirs. Hydrobiologia 275(276):197–205.

    Article  Google Scholar 

  • Naselli-Flores L, Padisak J. 2016. Blowing in the wind: how many roads can a phytoplanktont walk down? A synthesis on phytoplankton biogeography and spatial processes. Hydrobiologia 764:303–313.

    Article  Google Scholar 

  • Naselli-Flores L, Padisak J, Dokulil MT, Chorus I. 2003. Equilibrium/steady-state concept in phytoplankton ecology. Hydrobiologia 502:395–403.

    Article  Google Scholar 

  • Naeem S, Bunker DE, Hector A, Loreau M, Perrings C. 2009. Biodiversity, ecosystem functioning, and human wellbeing: an ecological and economic perspective. Oxford University Press.

    Book  Google Scholar 

  • Oksanen FJ, Blanchet G, Friendly M, Kindt R, Legendre P, McGlinn D, Wagner H. 2018. Vegan: Community Ecology Package. R package version 2.5–3.

  • Padisák J, Hajnal É, Naselli-Flores L, Dokulil MT, Nõges P, Zohary T. 2010. Convergence and divergence in organization of phytoplankton communities under various regimes of physical and biological control. Hydrobiologia 639:205–220.

    Article  Google Scholar 

  • Pápista É, Ács É, Böddi B. 2002. Chlorophyll-a determination with ethanol – a critical test. Hydrobiologia 485:191–198.

    Article  Google Scholar 

  • Petraitis PS, Latham RE, Niesenbaum RA. 1989. The Maintenance of Species Diversity by Disturbance. The Quarterly Review of Biology 64:393–418.

    Article  Google Scholar 

  • Ptacnik R, Andersen T, Brettum P, Lepistö L, Willén E. 2010. Regional species pools control community saturation in lake phytoplankton. Proceedings of the Royal Society b: Biological Sciences 277:3755–3764.

    Article  PubMed Central  Google Scholar 

  • Ptacnik R, Solimini AG, Andersen T, Tamminen T, Brettum P, Lepisto L, Rekolainen S. 2008. Diversity predicts stability and resource use efficiency in natural phytoplankton communities. Proceedings of the National Academy of Sciences 105:5134–5138.

    Article  CAS  Google Scholar 

  • R Core Team. 2014. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria.

  • Reynolds CS. 1994. The role of fluid motion in the dynamics of phytoplankton in lakes and rivers. In: Giller PS, Hilldrew AG, Raffaelli D, Eds. Ecology of aquatic organisms: scale, pattern, process, . Oxford: Blackwell Scientific Publications. pp 141–187.

    Google Scholar 

  • Reynolds CS. 2006. Ecology of phytoplankton. New York: Cambridge University Press.

    Book  Google Scholar 

  • Reynolds CS, Padisák J, Sommer U. 1993. Intermediate disturbance in the ecology of phytoplankton and the maintenance of species diversity: a synthesis. Hydrobiologia 249:183–188.

    Article  Google Scholar 

  • Ricklefs RE. 1987. Community Diversity: Relative Roles of Local and Regional Processes. Science 235:167–171.

    Article  CAS  PubMed  Google Scholar 

  • Rosseel Y. 2012. Lavaan: An R package for structural equation modeling. Journal of Statistical Software

  • Rosenzweig ML, Abramsky Z. 1993. How are diversity and productivity related? Journal of Enviornmental Sciences In book: Species Diversity in Ecological Communities: Historical and Geographical Perspectives, University of Chicago Press, New York.

  • Shen H, Song L. 2007. Comparative studies on physiological responses to phosphorus in two phenotypes of bloom-forming Microcystis. Hydrobiologia 592:475–486.

    Article  CAS  Google Scholar 

  • Shipley B. 2016. Cause and correlation in biology: A user’s guide to path analysis, structural equations, and causal inference in R. New York: Cambridge University Press.

    Book  Google Scholar 

  • Skácelová O, Lepš J. 2014. The relationship of diversity and biomass in phytoplankton communities weakens when accounting for species proportions. Hydrobiologia 724:67–77.

    Article  Google Scholar 

  • Sommer U, Padisák J, Reynolds CS, Juhász-Nagy P. 1993. Hutchinson’s heritage: the diversity-disturbance relationship in phytoplankton. Hydrobiologia 249:1–7.

    Article  Google Scholar 

  • Sousa WP. 1984. The Role of Disturbance in Natural Communities. Annual Review of Ecology and Systematics 15:353–391.

    Article  Google Scholar 

  • Stauffer RE. 1991. Environmental factors influencing chlorophyll v. nutrient relationships in lakes. Freshwater Biology 25:279–295.

    Article  Google Scholar 

  • Stein C, Morris N, Nock N. 2012. Structural Equation Modeling. Methods in molecular biology (Clifton, N.J.) 850: 495–512.

  • Straškraba M, Tundisi JG, Duncan A. 1993. State-of-the-art of reservoir limnology and water quality management. In: Straškraba M, Tundisi JG, Duncan A, Eds. Comparative Reservoir Limnology and Water Quality Management, . Dordrecht: Developments in Hydrobiology Springer, Netherlands. pp 213–288.

    Chapter  Google Scholar 

  • Tessier AJ, Woodruff P. 2002. Cryptic Trophic Cascade along a Gradient of Lake Size. Ecology 83:1263–1270.

    Article  Google Scholar 

  • Thornton KW, Kinnel BL, Payne FF. 1990. Reservoir Limnology: Ecological Perspectives. New York: John Wiley & Sons. p 246.

    Google Scholar 

  • Toffolon M, Piccolroaz S, Majone B, Soja A-M, Peeters F, Schmid M, Wüest A. 2014. Prediction of surface temperature in lakes with different morphology using air temperature. Limnology and Oceanography 59:2185–2202.

    Article  Google Scholar 

  • Török P, T-Krasznai E, B-Béres V, Bácsi I, Borics G, Tóthmérész B. 2016. Functional diversity supports the biomass–diversity humped-back relationship in phytoplankton assemblages. Functional Ecology 30: 1593–1602.

  • Utermöhl H. 1958. Zur Vervollkommnung der quantitativen Phytoplankton-Methodik: Mit 1 Tabelle und 15 abbildungen im Text und auf 1 Tafel. SIL Communications 9:1–38.

    Google Scholar 

  • Vallina SM, Follows MJ, Dutkiewicz S, Montoya JM, Cermeno P, Loreau M. 2014. Global relationship between phytoplankton diversity and productivity in the ocean. Nature Communications 5:4299.

    Article  CAS  PubMed  Google Scholar 

  • Watson SB, McCauley E, Downing JA. 1997. Patterns in phytoplankton taxonomic composition across temperate lakes of differing nutrient status. Limnology and Oceanography 42:487–495.

    Article  Google Scholar 

  • Whittaker RJ. 2010. Meta-analyses and mega-mistakes: calling time on meta-analysis of the species richness–productivity relationship. Ecology 91:2522–2533.

    Article  PubMed  Google Scholar 

  • Whittaker RJ, Heegaard E. 2003. What Is the Observed Relationship between Species Richness and Productivity? Comment. Ecology 84:3384–3390.

    Article  Google Scholar 

  • Wilsey B, Potvin C. 2000. Biodiversity and ecosystem functioning: importance of species evenness in an old field. Ecology 81:887–892.

    Article  Google Scholar 

  • Woolway RI, Jones ID, Maberly SC, French JR, Livingstone DM, Monteith DT, Simpson GL, Thackeray SJ, Andersen MR, Battarbee RW, DeGasperi CL, Evans CD, de Eyto E, Feuchtmayr H, Hamilton DP, Kernan M, Krokowski J, Rimmer A, Rose KC, Rusak JA, Ryves DB, Scott DR, Shilland EM, Smyth RL, Staehr PA, Thomas R, Waldron S, Weyhenmeyer GA. 2016. Diel Surface Temperature Range Scales with Lake Size. PLOS ONE 11:e0152466.

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang M, Straile D, Chen F, Shi X, Yang Z, Cai Y, Yu J, Kong F. 2018. Dynamics and drivers of phytoplankton richness and composition along productivity gradient. Science of the Total Environment 625:275–284.

    Article  CAS  PubMed  Google Scholar 

  • Zhang Q, Niu J, Buyantuyev A, Zhang J, Ding Y, Dong J. 2011. Productivity–species richness relationship changes from unimodal to positive linear with increasing spatial scale in the Inner Mongolia steppe. Ecological Research 26:649–658.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was funded by the grants from the coalition project for field observation stations of Chinese Academy of Sciences (KFJ-SW-YW036) and National Natural Science Foundation of China (32171538) and the Science and Technology Project of Guangdong Province (2015B020235007) to Bo-Ping Han. Erik Jeppesen was supported by the Tübitak program BIDEB 2232 (Project 118C250).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bo-Ping Han.

Additional information

Author Contributions: BPH, EJ and LN designed the study, YX, LW and QT collected data; YX, QT, BPH and EJ conducted the statistical and modelling analyses; YX and LW prepared the final figures; YX and BPH wrote the first draft of the manuscript, EJ, LN and BPH contributed substantially to revisions.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1279 kb)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, Y., Wang, L., Tang, Q. et al. The Relationship Between Phytoplankton Diversity and Ecosystem Functioning Changes with Disturbance Regimes in Tropical Reservoirs. Ecosystems 26, 752–767 (2023). https://doi.org/10.1007/s10021-022-00791-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10021-022-00791-4

Keywords

Navigation