Skip to main content

Advertisement

Log in

Response of Plant Productivity to Experimental Flooding in a Stable and a Submerging Marsh

  • Published:
Ecosystems Aims and scope Submit manuscript

Abstract

Recent models of tidal marsh evolution rely largely on the premise that plants are most productive at an optimal flooding regime that occurs when soil elevations are somewhere between mean sea level and mean high tide. Here, we use 4 years of manipulative “marsh organ” flooding experiments to test the generality of this conceptual framework and to examine how the optimal flooding frequency may change between years and locations. In our experiments, above and belowground growth of Schoenoplectus americanus was most rapid when flooded about 40% of the time in a rapidly submerging marsh and when flooded about 25% of the time in a historically stable marsh. Optimum flooding durations were nearly identical in each year of the experiment and did not differ for above and belowground growth. In contrast, above and belowground growth of Spartina patens decreased monotonically with increased flooding in all years and at both sites, indicating no optimal flooding frequency or elevation relative to sea level. Growth patterns in both species suggest a wider tolerance to flooding, and greater biomass for a given flooding duration, in the rapidly deteriorating marsh.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  • Arp WJ, Drake BG, Pockman WT, Curtis PS, Whigham DF. 1993. Interactions between C3 and C4 salt marsh plant species during four years exposure to elevated atmospheric CO2. Adv Veg Sci 14:133–43.

    Google Scholar 

  • Baustian JJ, Mendelssohn IA, Hester MW. 2012. Vegetation’s importance in regulating surface elevation in a coastal salt marsh facing elevated rates of sea level rise. Glob Change Biol 18:3377–82.

    Article  Google Scholar 

  • Bertness MD. 1991. Zonation of Spartina patens and Spartina alterniflora in New England salt marsh. Ecology 72:138–48.

    Article  Google Scholar 

  • Broome SW, Mendelssohn IA, McKee KL. 1995. Relative growth of Spartina patens (Ait.) Muhl. and Scirpus olneyi gray occurring in a mixed stand as affected by salinity and flooding depth. Wetlands 15:20–30.

    Article  Google Scholar 

  • Cadol D, Engelhardt K, Elmore A, Sanders G. 2014. Elevation-dependent surface elevation gain in a tidal freshwater marsh and implications for marsh persistence. Assoc Sci Limnol Oceanogr 59:1065–80.

    Article  Google Scholar 

  • Cahoon DR, Ford MA, Hensel PF. 2004. Ecogeomorphology of Spartina patens-dominated tidal marshes: soil organic matter accumulation, marsh elevation dynamics, and disturbance. In: Fagherazzi S, Marani M, Blum LK, Eds. The ecogeomorphology of tidal marshes, coastal and estuarine studies, Vol. 59. Washington: American Geophysical Union. p 247–66.

    Google Scholar 

  • Clarke PJ. 2014. Seeking global generality: a critique for mangrove modellers. Mar Freshw Res 65:930–3.

    Article  Google Scholar 

  • D’Alpaos A, Lanzoni S, Marani M, Rinaldo A. 2007. Landscape evolution in tidal embayments: modeling the interplay of erosion, sedimentation, and vegetation dynamics. J Geophys Res 112:F01008.

    Google Scholar 

  • D’Alpaos A, Da Lio C, Marani M. 2012. Biogeomorphology of tidal landforms: physical and biological processes shaping the tidal landscape. Ecohydrology 5:550–62.

    Article  Google Scholar 

  • Day J, Ibanez C, Scarton F, Pont D, Hensel P, Day J, Lane R. 2011. Sustainability of Mediterranean deltaic and lagoon wetlands with sea-level rise: the importance of river input. Estuaries Coasts 34:483–93.

    Article  Google Scholar 

  • Ganju NK, Nidzieko NJ, Kirwan ML. 2013. Inferring tidal wetland stability from channel sediment fluxes: observations and a conceptual model. J Geophys Res 118:2045–58.

    Article  Google Scholar 

  • Gough L, Grace JB. 1998. Effects of flooding, salinity and herbivory on coastal plant communities, Louisiana, United States. Oecologia 117:527–35.

    Article  Google Scholar 

  • Hensel PF, Scott GA, Allen AL, Gill SK, Cahoon DR, Nemerson D, Guntenspergen GR. 2008. Geodetic and tidal datums: tying wetland surface elevation change to local water levels. 2008 Ocean Sciences Meeting Abstract. American Geophysical Union, Orlando FL.

  • Kearney MS, Rogers AS, Townsend G, Rizzo E, Stutzer D. 2002. Landsat imagery shows decline of coastal marshes in Chesapeake and Delaware Bays. Eos Trans Am Geophys Union 83:173–8.

    Article  Google Scholar 

  • Kirwan ML, Christian RR, Blum LK, Brinson MM. 2012. On the relationship between sea level and Spartina alterniflora production. Ecosystems 15:140–7.

    Article  Google Scholar 

  • Kirwan ML, Murray AB. 2007. A coupled geomorphic and ecological model of tidal marsh evolution. Proc Natl Acad Sci 104:6118–22.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kirwan ML, Guntenspergen GR, D’Alpaos A, Morris JT, Mudd SM, Temmerman S. 2010. Limits on the adaptability of coastal marshes to rising sea level. Geophys Res Lett 37:L23401.

    Article  Google Scholar 

  • Kirwan ML, Guntenspergen GR. 2010. Influence of tidal range on the stability of coastal marshland. J Geophys Res 115:F02009.

    Google Scholar 

  • Kirwan ML, Langley JA, Guntenspergen GR, Megonigal JP. 2013. The impact of sea-level rise on organic matter decay rates in Chesapeake Bay brackish tidal marshes. Biogeosciences 10:1869–76.

    Article  CAS  Google Scholar 

  • Kirwan ML, Guntenspergen GR. 2012. Feedbacks between inundation, root production, and shoot growth in a rapidly submerging brackish marsh. J Ecol 100:764–70.

    Article  Google Scholar 

  • Langley JA, Mozdzer TJ, Shepard KA, Hagerty SB, Megonigal JP. 2013. Tidal marsh plant responses to elevated CO2, nitrogen fertilization, and sea level rise. Glob Change Biol 19:1495–503.

    Article  Google Scholar 

  • Langley JA, Mckee KL, Cahoon DR, Cherry JA, Megonigal JP. 2009. Elevated CO2 stimulates marsh elevation gain, counterbalancing sea-level rise. Proc Natl Acad Sci 106:6182–6.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Larsen LG, Harvey JW. 2011. Modeling of hydroecological feedbacks predicts distinct classes of wetland channel pattern and process that influence ecological function and restoration potential. Geomorphology 126:279–96.

    Article  Google Scholar 

  • Leeuw De et al. 1990. Year-to-year variation in peak above-ground biomass of six salt-marsh angiosperm communities as related to rainfall deficit and inundation frequency. Aquat Bot 36:139–51.

    Article  Google Scholar 

  • Li H, Yang SL. 2009. Trapping effect of tidal marsh vegetation on suspended sediment, Yangtze Delta. J Coastal Res 25:915–24.

    Article  Google Scholar 

  • Lorenzo-Trueba J, Voller VR, Paola C, Twilley RR, Bevington AE. 2012. Exploring the role of organic matter accumulation on delta evolution. J Geophys Res 117:F00A02.

    Google Scholar 

  • Lovelock CE, Adame MF, Bennion V, Hayes M, Reef R, Santini N, Cahoon DR. 2015. Sea level and turbidity controls on mangrove soil surface elevation change. Estuar Coast Shelf Sci 153:1–9.

    Article  Google Scholar 

  • McKee KL, Patrick WH Jr. 1988. The relationship of smooth cordgrass (Spartina alterniflora) to tidal datums: a review. Estuaries 11:143–51.

    Article  Google Scholar 

  • McKee KL, Cahoon DR, Feller IC. 2007. Caribbean mangroves adjust to rising sea level through biotic controls on change in soil elevation. Glob Ecol Biogeogr 16:545–56.

    Article  Google Scholar 

  • Marani M, D’Alpaos A, Lanzoni S, Carniello L, Rinaldo A. 2007. Biologically-controlled multiple equilibria of tidal landforms and the fate of the Venice lagoon. Geophys Res Lett 34:L11402.

    Article  Google Scholar 

  • Marani M, Da Lio C, D’Alpaos A. 2013. Vegetation engineers marsh morphology through multiple competing stable states. Proc Natl Acad Sci 110:3259–63.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mariotti G, Fagherazzi S. 2010. A numerical model for the coupled long-term evolution of salt marshes and tidal flats. J Geophys Res 115:F01004.

    Google Scholar 

  • Morris JT. 2006. Competition among marsh macrophytes by means of geomorphological displacement in the intertidal zone. Estuar Coast Shelf Sci 69:395–402.

    Article  Google Scholar 

  • Morris JT, Haskins B. 1990. A 5-yr record of aerial primary production and stand characteristics of Spartina alterniflora. Ecology 71:2209–17.

    Article  Google Scholar 

  • Morris JT, Sundareshwar PV, Nietch CT, Kjerfve B, Cahoon DR. 2002. Responses of coastal wetlands to rising sea level. Ecology 83:2869–77.

    Article  Google Scholar 

  • Mudd SM, Howell SM, Morris JT. 2009. Impact of dynamic feedbacks between sedimentation, sea-level rise, and biomass production on near surface marsh stratigraphy and carbon accumulation. Estuar Coast Shelf Sci 82:377–89.

    Article  CAS  Google Scholar 

  • Nyman JA, DeLaune RD, Roberts HH, Patrick WH Jr. 1993. Relationship between vegetation and soil formation in a rapidly submerging coastal marsh. Mar Ecol Prog Ser 96:269–79.

    Article  Google Scholar 

  • Nyman JA, Walters RJ, Delaune RD, Patrick WH. 2006. Marsh vertical accretion via vegetative growth. Estuar Coast Shelf Sci 69:370–80.

    Article  Google Scholar 

  • Steever EZ, Warren RS, Niering WA. 1976. Tidal energy subsidy and standing crop production of Spartina alterniflora. Estuar Coast Mar Sci 4:473–8.

    Article  Google Scholar 

  • Stevenson JC, Kearney MS, Pendleton EC. 1985. Sedimentation and erosion in a Chesapeake Bay brackish marsh system. Mar Geol 67:212–35.

    Article  Google Scholar 

  • Swanson KM, Drexler JZ, Schoellhamer DH, Thorne KM, Casazza ML, Overton CT, Callaway JC, Takekawa JY. 2014. Wetland accretion rate model of ecosystem resilience (WARMER) and its application to habitat sustainability for endangered species in the San Francisco Estuary. Estuaries Coasts 37:476–92.

    Article  Google Scholar 

  • Tambroni N, Seminara G. 2012. A one-dimensional eco-geomorphic model of marsh response to sea level rise: wind effects, dynamics of the marsh border and equilibrium. J Geophys Res 117:F03026.

    Google Scholar 

  • Teal JM, Howes BL. 1996. Interannual variability of a saltmarsh ecosystem. Assoc Sci Limnol Oceanogr 41:802–9.

    Article  Google Scholar 

  • Turner RE, Swenson EM, Milan CS. 2000. Organic and inorganic contributions to vertical accretion in salt marsh sediments. In: Weinstein MP, Kreeger DA, Eds. Concepts and controversies in tidal marsh ecology. Dordrecht: Springer. p 583–95.

    Google Scholar 

  • Visser JM, Sasser CE, Cade BS. 2006. The effect of multiple stressors on salt marsh end-of-season biomass. Estuaries Coasts 29:328–39.

    Article  Google Scholar 

  • Voss CM, Christian RR, Morris JT. 2013. Marsh macrophyte responses to inundation anticipate impacts of sea-level rise and indicate ongoing drowning of North Carolina marshes. Mar Biol 160:181–94.

    Article  PubMed Central  PubMed  Google Scholar 

  • Watson EB, Oczkowski AJ, Wigand C, Hanson AR, Davey EW, Crosby SC, Johnson RL, Andrews HM. 2014. Nutrient enrichment and precipitation changes do not enhance resiliency of salt marshes to sea level rise in the Northeastern US. Clim Change. doi:10.1007/s10584-014-1189-x.

    Google Scholar 

  • Więski K, Pennings SC. 2013. Climate drivers of Spartina alterniflora saltmarsh production in Georgia, USA. Ecosystems 17:473–84.

    Article  Google Scholar 

  • Yang SL. 1999. Tidal wetland sedimentation in the Yangtze Delta. J Coastal Res 15:1091–9.

    Google Scholar 

Download references

Acknowledgments

This work was supported by the USGS Climate and Land Use Change Research and Development Program, NSF LTER #1237733, and NSF Coastal SEES #1426981. Any use of trade, product, or firm names is for descriptive purposes only and does not imply endorsement by the US Government. This is contribution number 3446 of the Virginia Institute of Marine Science.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthew L. Kirwan.

Additional information

Author contributions

All authors contributed to study design, implementation, and paper writing.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kirwan, M.L., Guntenspergen, G.R. Response of Plant Productivity to Experimental Flooding in a Stable and a Submerging Marsh. Ecosystems 18, 903–913 (2015). https://doi.org/10.1007/s10021-015-9870-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10021-015-9870-0

Keywords

Navigation