Skip to main content
Log in

Bringing Color into the Picture: Using Digital Repeat Photography to Investigate Phenology Controls of the Carbon Dioxide Exchange in a Boreal Mire

  • Published:
Ecosystems Aims and scope Submit manuscript

Abstract

Mire vegetation phenology is closely linked to the ecosystem carbon cycle but rarely monitored and quantified with high temporal resolution. In this study, we use digital repeat photography to explore phenology as a control of the carbon dioxide (CO2) exchange measured by eddy covariance (EC) in a minerogenic boreal mire in northern Sweden over 2 years (2011–2012). Strong correlations and seasonal hysteresis effects were observed between the green chromatic coordinate (g cc) derived from the digital image archive and leaf area index, day length, and growing degree-day sum (GDDS). Differences in GDDS between the 2 years were the main control on the between-year variations in the spring patterns of g cc. Periods with lower water table level coincided with an increase of the red chromatic coordinate. The onset and magnitudes of EC-derived photosynthetic CO2 uptake (that is, gross ecosystem production, GEP) and net ecosystem CO2 exchange (NEE) during the spring green-up of vascular plants were more closely related to those of g cc than to those of air temperature and photosynthetically active radiation. In contrast, abiotic variables controlled GEP during the summer period when vascular plant canopy cover was fully developed. Stepwise regression analysis suggested that g cc contributed substantially in explaining variations in GEP during spring and autumn. Over both growing seasons, g cc was well correlated with GEP (r 2 = 0.68), NEE (r 2 = 0.58), and ecosystem respiration (r 2 = 0.50). Overall, we show that digital repeat photography provides an inexpensive and effective method for the continuous quantification of the phenological patterns of the vascular plant community in mire ecosystems. Our results suggest that vegetation phenology is an important control of the mire CO2 exchange and should be considered in both experimental and modeling studies to better account for the separate effects of phenology and abiotic drivers on mire carbon dynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

References

  • Ahrends HE, Etzold S, Kutsch WL, Stoeckli R, Bruegger R, Jeanneret F, Wanner H, Buchmann N, Eugster W. 2009. Tree phenology and carbon dioxide fluxes: use of digital photography for process-based interpretation at the ecosystem scale. Clim Res 39:261–74.

    Article  Google Scholar 

  • Alexandersson H, Karlström C, Larsson-Mccann S. 1991. Temperature and precipitation in Sweden 1961–1990. Reference normals. Meteorologi 81. Norrköping, Sweden: Swedish Meteorological and Hydrological Institute (SMHI).

  • Aubinet M, Grelle A, Ibrom A, Rannik U, Moncrieff J, Foken T, Kowalski A, Martin P, Berbigier P, Bernhofer C, Clement R, Elbers J, Granier A, Grunwald T, Morgenstern K, Pilegaard K, Rebmann C, Snijders W, Valentini R, Vesala T. 1999. Estimates of the annual net carbon and water exchange of forests: the EUROFLUX methodology. Adv Ecol Res 30:113–75.

    Article  Google Scholar 

  • Barr A, Black T, Hogg E, Kljun N, Morgenstern K, Nesic Z. 2004. Inter-annual variability in the leaf area index of a boreal aspen-hazelnut forest in relation to net ecosystem production. Agric For Meteorol 126:237–55.

    Article  Google Scholar 

  • Bauerle WL, Oren R, Way DA, Qian SS, Stoy PC, Thornton PE, Bowden JD, Hoffman FM, Reynolds RF. 2012. Photoperiodic regulation of the seasonal pattern of photosynthetic capacity and the implications for carbon cycling. Proc Natl Acad Sci 109:8612–17.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bryant RG, Baird AJ. 2003. The spectral behaviour of Sphagnum canopies under varying hydrological conditions. Geophys Res Lett 30:1134.

    Article  Google Scholar 

  • Bu Z, Hans J, Li H, Zhao G, Zheng X, Ma J, Zeng J. 2011. The response of peatlands to climate warming: a review. Acta Ecol Sin 31:157–62.

    Article  Google Scholar 

  • Bubier JL, Rock BN, Crill PM. 1997. Spectral reflectance measurements of boreal wetland and forest mosses. J Geophys Res Atmos 102:29483–94.

    Article  Google Scholar 

  • Chapin FSIII, Woodwell GM, Randerson JT, Rastetter EB, Lovett GM, Baldocchi DD and others 2006. Reconciling carbon-cycle concepts, terminology, and methods. Ecosystems 9:1041–50.

    Article  CAS  Google Scholar 

  • Chojnicki BH. 2013. Spectral estimation of wetland carbon dioxide exchange. Int Agrophys 27:1–5.

    CAS  Google Scholar 

  • Crimmins MA, Crimmins TM. 2008. Monitoring plant phenology using digital repeat photography. Environ Manag 41:949–58.

    Article  Google Scholar 

  • Dise NB. 2009. Peatland response to global change. Science 326:810–11.

    Article  CAS  PubMed  Google Scholar 

  • Eklundh L, Jin H, Schubert P, Guzinski R, Heliasz M. 2011. An optical sensor network for vegetation phenology monitoring and satellite data calibration. Sensors 11:7678–709.

    Article  PubMed Central  PubMed  Google Scholar 

  • Forsythe WC, Rykiel EJ Jr, Stahl RS, Wu H, Schoolfield RM. 1995. A model comparison for daylength as a function of latitude and day of year. Ecol Model 80:87–95.

    Article  Google Scholar 

  • Gaalen KEV, Flanagan LB, Peddle DR. 2007. Photosynthesis, chlorophyll fluorescence and spectral reflectance in Sphagnum moss at varying water contents. Oecologia 153:19–28.

    Article  PubMed  Google Scholar 

  • Gillespie AR, Kahle AB, Walker RE. 1987. Color enhancement of highly correlated images. II. Channel ratio and ‘chromaticity’ transformation techniques. Remote Sens Environ 22:343–65.

    Article  Google Scholar 

  • Gorham E. 1991. Northern peatlands: role in the carbon cycle and probable responses to climatic warming. Ecol Appl 1:182–95.

    Article  Google Scholar 

  • Graham EA, Hamilton MP, Mishler BD, Rundel PW, Hansen MH. 2006. Use of a networked digital camera to estimate net CO2 uptake of a desiccation-tolerant moss. Int J Plant Sci 167:751–8.

    Article  CAS  Google Scholar 

  • Hardie SML, Garnett MH, Fallick AE, Ostle NJ, Rowland AP. 2009. Bomb 14C analysis of ecosystem respiration reveals that peatland vegetation facilitates release of old carbon. Geoderma 153:393–401.

    Article  CAS  Google Scholar 

  • Harris A, Dash J. 2011. A new approach for estimating northern peatland gross primary productivity using a satellite-sensor-derived chlorophyll index. J Geophys Res Biogeosci 116:G04002.

    Google Scholar 

  • Hsieh CI, Katul G, Chi T. 2000. An approximate analytical model for footprint estimation of scaler fluxes in thermally stratified atmospheric flows. Adv Water Resour 23:765–72.

    Article  Google Scholar 

  • Ide R, Oguma H. 2010. Use of digital cameras for phenological observations. Ecol Inform 5:339–47.

    Article  Google Scholar 

  • IPCC. 2013: Climate change 2013: the physical science basis. In: Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM, Eds. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge: Cambridge University Press.

  • Keenan TF, Darby B, Felts E, Sonnentag O, Friedl M, Hufkens K, O’ Keefe JF, Klosterman S, Munger JW, Toomey M, Richardson AD. 2014. Tracking forest phenology and seasonal physiology using digital repeat photography: a critical assessment. Ecol Appl . doi:10.1890/13-0652.1.

    Google Scholar 

  • Kljun N, Calanca P, Rotach MW, Schmid HP. 2004. A simple parameterisation for flux footprint predictions. Bound Layer Meteorol 112:503–23.

    Article  Google Scholar 

  • Körner C, Basler D. 2010. Phenology under global warming. Science 327:1461–2.

    Article  PubMed  Google Scholar 

  • Laine AM, Bubier J, Riutta T, Nilsson MB, Moore TR, Vasander H, Tuittila ES. 2012. Abundance and composition of plant biomass as potential controls for mire net ecosytem CO2 exchange. Botany 90:63–74.

    Article  CAS  Google Scholar 

  • Lieth HH. 1974. Phenology and seasonality modeling. London: Chapman and Hall. p 444.

    Book  Google Scholar 

  • Lindroth A, Lund M, Nilsson M, Aurela M, Christensen TR, Laurila T, Rinne J, Riutta T, Sagerfors J, StröM L, Tuovinen J-P, Vesala T. 2007. Environmental controls on the CO2 exchange in north European mires. Tellus B 59:812–25.

    Article  Google Scholar 

  • Lund M, Lafleur PM, Roulet NT, Lindroth A, Christensen TR, Aurela M, Chojnicki BH, Flanagan LB, Humphreys ER, Laurila T, Oechel WC, Olejnik J, Rinne J, Schubert P, Nilsson MB. 2010. Variability in exchange of CO2 across 12 northern peatland and tundra sites. Glob Change Biol 16:2436–48.

    Google Scholar 

  • Meyer GE, Neto JC. 2008. Verification of color vegetation indices for automated crop imaging applications. Comput Electron Agric 63:282–93.

    Article  Google Scholar 

  • Migliavacca M, Galvagno M, Cremonese E, Rossini M, Meroni M, Sonnentag O, Cogliati S, Manca G, Diotri F, Busetto L, Cescatti A, Colombo R, Fava F, Morra di Cella U, Pari E, Siniscalco C, Richardson AD. 2011. Using digital repeat photography and eddy covariance data to model grassland phenology and photosynthetic CO2 uptake. Agr Forest Meteorol 151:1325–37.

    Article  Google Scholar 

  • Nilsson M, Sagerfors J, Buffam I, Laudon H, Eriksson T, Grelle A, Klemedtsson L, Weslien P, Lindroth A. 2008. Contemporary carbon accumulation in a boreal oligotrophic minerogenic mire—a significant sink after accounting for all C-fluxes. Glob Change Biol 14:2317–32.

    Article  Google Scholar 

  • Peichl M, Sagerfors J, Lindroth A, Buffam I, Grelle A, Klemedtsson L, Laudon H, Nilsson MB. 2013. Energy exchange and water budget partitioning in a boreal minerogenic mire. J Geophys Res Biogeosci 118:1–13.

    Article  Google Scholar 

  • Peichl M, Öquist M, Ottosson-Löfvenius M, Ilstedt U, Sagerfors J, Grelle A, Lindroth A, Nilsson MB. 2014. A 12-year record reveals pre-growing season temperature and water table level threshold effects on the net carbon dioxide uptake in a boreal fen. Environ Res Lett 9:055006. doi:10.1088/1748-9326/9/5/055006.

    Article  Google Scholar 

  • Reichstein M, Falge E, Baldocchi D, Papale D, Aubinet M, Berbigier P, Bernhofer C, Buchmann N, Gilmanov T, Granier A, Grunwald T, Havrankova K, Ilvesniemi H, Janous D, Knohl A, Laurila T, Lohila A, Loustau D, Matteucci G, Meyers T, Miglietta F, Ourcival J-M, Pumpanen J, Rambal S, Rotenberg E, Sanz M, Tenhunen J, Seufert G, Vaccari F, Vesala T, Yakir D, Valentini R. 2005. On the separation of net ecosystem exchange into assimilation and ecosystem respiration: review and improved algorithm. Glob Change Biol 11:1424–39.

    Article  Google Scholar 

  • Richardson AD, O’Keefe J. 2009. Phenological differences between understory and overstory. In: Noormets A, Ed. Phenology of ecosystem processes. New York: Springer. p 87–117.

    Chapter  Google Scholar 

  • Richardson AD, Jenkins JP, Braswell BH, Hollinger DY, Ollinger SV, Smith M-L. 2007. Use of digital webcam images to track spring green-up in a deciduous broadleaf forest. Oecologia 152:323–34.

    Article  PubMed  Google Scholar 

  • Richardson AD, Braswell BH, Hollinger DY, Jenkins JP, Ollinger SV. 2009. Near-surface remote sensing of spatial and temporal variation in canopy phenology. Ecol Appl 19:1417–28.

    Article  PubMed  Google Scholar 

  • Richardson AD, Keenan TF, Migliavacca M, Ryu Y, Sonnentag O, Toomey M. 2013. Climate change, phenology, and phenological control of vegetation feedbacks to the climate system. Agric For Meteorol 169:156–73.

    Article  Google Scholar 

  • Robroek B, Schouten MGC, Limpens J, Berendse F, Poorter H. 2009. Interactive effects of water table and precipitation on net CO2 assimilation of three co-occurring Sphagnum mosses differing in distribution above the water table. Glob Change Biol 15:680–91.

    Article  Google Scholar 

  • Romero JM, Valverde F. 2009. Evolutionarily conserved photoperiod mechanisms in plants. Plant Signal Behav 4:642–4.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Roulet N, Hardill S, Comer N. 1991. Continuous measurement of the depth of water table, inundation, in wetlands with fluctuating surfaces. Hydrol Process 5:399–403.

    Article  Google Scholar 

  • Roulet NT, Lafleur PM, Richard PJH, Moore TR, Humphreys ER, Bubier J. 2007. Contemporary carbon balance and late Holocene carbon accumulation in a northern peatland. Glob Change Biol 13:397–411.

    Article  Google Scholar 

  • Russelle MP, Wilhelm W, Olson RA, Power JF. 1984. Growth analysis based on degree days. Crop Sci. 24:28–32.

  • Ryu Y, Nilson T, Kobayashi H, Sonnentag O, Law BE, Baldocchi DD. 2010. On the correct estimation of effective leaf area index: does it reveal information on clumping effects? Agric For Meteorol 150:463–72.

    Article  Google Scholar 

  • Sagerfors J, Lindroth A, Grelle A, Klemedtsson L, Weslien P, Nilsson M. 2008. Annual CO2 exchange between a nutrient-poor, minerotrophic, boreal mire and the atmosphere. J Geophys Res 113:G01001.

    Google Scholar 

  • Sakamoto T, Gitelson AA, Nguy-Robertson AL, Arkebauer TJ, Wardlow BD, Suyker AE, Verma SB, Shibayama M. 2012. An alternative method using digital cameras for continuous monitoring of crop status. Agric For Meteorol 154–155:113–26.

    Article  Google Scholar 

  • Savage K, Davidson EA, Tang J. 2013. Diel patterns of autotrophic and heterotrophic respiration among phenological stages. Glob Chang Biol 19:1151–9.

    Article  CAS  PubMed  Google Scholar 

  • Schubert P, Eklundh L, Lund M, Nilsson M. 2010. Estimating northern peatland CO2 exchange from MODIS time series data. Remote Sens Environ 114:1178–89.

    Article  Google Scholar 

  • Schuepp PH, Leclerc MY, MacPherson JI, Desjardins RL. 1990. Footprint prediction of scalar fluxes from analytical solutions of the diffusion equation. Bound Layer Meteorol 50:355–73.

    Article  Google Scholar 

  • Shaver GR, Street LE, Rastetter EB, Van Wijk MT, Williams M. 2007. Functional convergence in regulation of net CO2 flux in heterogeneous tundra landscapes in Alaska and Sweden. J Ecol 95:802–17.

    Article  Google Scholar 

  • Sonnentag O, Chen JM, Roberts DA, Talbot J, Halligan KQ, Govind A. 2007a. Mapping tree and shrub leaf area indices in an ombrotrophic peatland through multiple endmember spectral unmixing. Remote Sens Environ 109:342–60.

    Article  Google Scholar 

  • Sonnentag O, Talbot J, Chen JM, Roulet NT. 2007b. Using direct and indirect measurements of leaf area index to characterize the shrub canopy in an ombrotrophic peatland. Agric For Meteorol 144:200–12.

    Article  Google Scholar 

  • Sonnentag O, Detto M, Vargas R, Ryu Y, Runkle BRK, Kelly M, Baldocchi DD. 2011. Tracking the structural and functional development of a perennial pepperweed, Lepidium latifolium L., infestation using a multi-year archive of webcam imagery and eddy covariance measurements. Agric For Meteorol 151:916–26.

    Article  Google Scholar 

  • Sonnentag O, Hufkens K, Teshera-Sterne C, Young AM, Friedl M, Braswell BH, Milliman T, O’Keefe J, Richardson AD. 2012. Digital repeat photography for phenological research in forest ecosystems. Agric For Meteorol 152:159–77.

    Article  Google Scholar 

  • Sulman BN, Desai AR, Saliendra NZ, Lafleur PM, Flanagan LB, Sonnentag O, Mackay DS, Barr AG, van der Kamp G. 2010. CO2 fluxes at northern fens and bogs have opposite responses to inter-annual fluctuations in water table. Geophys Res Lett 37:L19702.

    Google Scholar 

  • Teklemariam TA, Lafleur PM, Moore TR, Roulet NT, Humphreys ER. 2010. The direct and indirect effects of inter-annual meteorological variability on ecosystem carbon dioxide exchange at a temperate ombrotrophic bog. Agric For Meteorol 150:1402–11.

    Article  Google Scholar 

  • Turunen J, Tomppo E, Tolonen K, Reinikainen A. 2002. Estimating carbon accumulation rates of undrained mires in Finland–application to boreal and subarctic regions. Holocene 12:69–80.

    Article  Google Scholar 

  • Vogelmann JE, Moss DM. 1993. Spectral reflectance measurements in the genus Sphagnum. Remote Sens Environ 45:273–9.

    Article  Google Scholar 

  • Westergaard-Nielsen A, Lund M, Hansen BU, Tamstorf MP. 2013. Camera derived vegetation greenness index as proxy for gross primary production in a low Arctic wetland area. ISPRS J Photogramm Remote Sens 86:89–99.

    Article  Google Scholar 

  • Wilson D, Alm J, Riutta T, Laine J, Byrne KA, Farrell EP, Tuittila E-S. 2007. A high resolution green area index for modelling the seasonal dynamics of CO2 exchange in peatland vascular plant communities. Plant Ecol 190:37–51.

    Article  Google Scholar 

  • Woebbecke DM, Meyer GE, Von Bargen K, Mortensen DA. 1995. Color indices for weed identification under various soil, residue, and lighting conditions. Trans ASAE 38(1):259–269.

  • Yang X, Tang J, Mustard JF. 2014. Beyond leaf color: comparing camera-based phenological metrics with leaf biochemical, biophysical, and spectral properties throughout the growing season of a temperate deciduous forest. J Geophys Res Biogeosci 119:181–91.

    Article  Google Scholar 

  • Yurova A, Wolf A, Sagerfors J, Nilsson M. 2007. Variations in net ecosystem exchange of carbon dioxide in a boreal mire: modeling mechanisms linked to water table position. J Geophys Res 112:G02025.

    Google Scholar 

Download references

Acknowledgments

This study was financed by the Swedish Research Council for Environment, Agricultural Sciences and Spatial Planning (Grant No. 2007-666). We also acknowledge the Kempe Foundation for the grants supporting the micrometeorological instrumentation. Support from the Integrated Carbon Observation System (ICOS) Sweden research infrastructure (Swedish Research Council) is also acknowledged. We thank Pernilla Löfvenius for the maintenance of the digital camera set-up and management of the digital image archive. We also thank Jörgen Sagerfors, Paul Smith, and Mikaell Ottosson Löfvenius for helpful discussions of this research work and for maintenance of the eddy covariance and meteorological instrumentation at the field site.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthias Peichl.

Additional information

Author contributions

MP designed the study, analyzed the data, wrote the paper, OS designed the study, contributed to data analysis, contributed to the paper writing, MBN designed the study, contributed to the paper writing, provided funding for the study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peichl, M., Sonnentag, O. & Nilsson, M.B. Bringing Color into the Picture: Using Digital Repeat Photography to Investigate Phenology Controls of the Carbon Dioxide Exchange in a Boreal Mire. Ecosystems 18, 115–131 (2015). https://doi.org/10.1007/s10021-014-9815-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10021-014-9815-z

Keywords

Navigation