Skip to main content

Advertisement

Log in

Century-Scale Responses of Ecosystem Carbon Storage and Flux to Multiple Environmental Changes in the Southern United States

  • Published:
Ecosystems Aims and scope Submit manuscript

Abstract

Terrestrial ecosystems in the southern United States (SUS) have experienced a complex set of changes in climate, atmospheric CO2 concentration, tropospheric ozone (O3), nitrogen (N) deposition, and land-use and land-cover change (LULCC) during the past century. Although each of these factors has received attention for its alterations on ecosystem carbon (C) dynamics, their combined effects and relative contributions are still not well understood. By using the Dynamic Land Ecosystem Model (DLEM) in combination with spatially explicit, long-term historical data series on multiple environmental factors, we examined the century-scale responses of ecosystem C storage and flux to multiple environmental changes in the SUS. The results indicated that multiple environmental changes shifted SUS ecosystems from a C source of 1.20 ± 0.56 Pg (1 Pg = 1015 g) during the period 1895 to 1950, to a C sink of 2.00 ± 0.94 Pg during the period 1951 to 2007. Over the entire period spanning 1895–2007, SUS ecosystems were a net C sink of 0.80 ± 0.38 Pg. The C sink was primarily due to an increase in the vegetation C pool, whereas the soil C pool decreased during the study period. The spatiotemporal changes of C storage were caused by changes in multiple environmental factors. Among the five factors examined (climate, LULCC, N deposition, atmospheric CO2, and tropospheric O3), elevated atmospheric CO2 concentration was the largest contributor to C sequestration, followed by N deposition. LULCC, climate, and tropospheric O3 concentration contributed to C losses during the study period. The SUS ecosystem C sink was largely the result of interactive effects among multiple environmental factors, particularly atmospheric N input and atmospheric CO2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13

Similar content being viewed by others

References

  • Alexander RB, Smith RA. 1990. County-level estimates of nitrogen and phosphorus fertilizer use in the United States, 1945 to 1985. U.S. Geological Survey Open-File Report 90-130.

  • Birdsey RA, Lewis BM. 2003. Carbon in U.S. forests and wood products, 1987–1997: state-by-state estimates. Gen. Tech. Rep. NE-310, Washington, DC: U.S. Department of Agriculture, Forest Service.

  • Birdsey RA, Pregitzer K, Lucier A. 2006. Forest carbon management in the United States: 1600–2100. J Environ Qual 35:1461–9.

    Article  PubMed  CAS  Google Scholar 

  • Boden TA, Marland G, Andres RJ. 2009. Global, regional, and National fossil-fuel CO2 emissions. Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, Tenn., USA. doi:10.3334/CDIAC/00001.

  • Boggs JL, McNulty SG, Gavazzi MJ, Moore JM. 2005. Tree growth, foliar chemistry, and nitrogen cycling across a nitrogen deposition gradient in southern Appalachian deciduous forests. Can J For Res 35:1901–13.

    Article  CAS  Google Scholar 

  • Chameides WL, Kasibhatla PS, Yienger J, Levy H. 1994. Growth of continental-scale metro-agro-plexes, regional ozone pollution, and world food production. Science 264:74–7.

    Article  PubMed  CAS  Google Scholar 

  • Chapelka AH, Samulson LJ. 1998. Ambient ozone effects on forest trees of the eastern United States: a review. New Phytologist 139:91–108.

    Article  Google Scholar 

  • Chen H, Tian H. 2005. Does a general temperature-dependent Q10 model of soil respiration exist at biome and global scale? J Integr Plant Biol 47:1288–302. doi:10.1111/j.1744-7909.2005.00211.x.

    Article  Google Scholar 

  • Chen H, Tian H, Liu M, Melillo J, Pan S, Zhang C. 2006. Effect of land-cover change on terrestrial carbon dynamics in the Southern USA. J Environ Qual 35:1533–47.

    Article  PubMed  CAS  Google Scholar 

  • Chen G, Tian H, Zhang C, Liu M, Ren W, Zhu W, Chappelka A, Prior SA, Lockaby GB. 2012. Drought in the Southern United States over the 20th century: variability and its impacts on terrestrial ecosystem productivity and carbon storage. Climatic Change. doi:10.1007/s10584-012-0410-z.

    Google Scholar 

  • Churkina G, Trusilova K, Vetter M, Dentener F. 2007. Contribution of nitrogen deposition and forest regrowth to terrestrial carbon uptake. Carbon Balance Manag 2:5. doi:10.1186/1750-0680-2-5.

    Article  PubMed  Google Scholar 

  • Curtis PS, Wang X. 1998. A meta-analysis of elevated CO2 effects on woody plant mass, form, and physiology. Oecologia 113:299–313.

    Google Scholar 

  • Delcourt HR, Harris WF. 1980. Carbon budget of the southeastern United States: analysis of historic change in trend from source to sink. Science 210:321–3.

    Article  PubMed  CAS  Google Scholar 

  • Dentener FJ. 2006. Global maps of atmospheric nitrogen deposition, 1860, 1993, and 2050. Available online http://daac.ornl.gov/ from Oak Ridge National Laboratory Distributed Active Archive Center, Oak Ridge, Tennessee, USA.

  • Enting IG, Wigley TML, Heimann M. 1994. Future emissions and concentrations of carbon dioxide: key ocean/atmosphere/land analyses. CSIRO Division of Atmospheric Research Tech Paper No. 31, Melbourne.

  • Ellsworth DS. 1999. CO2 enrichment in a maturing pine forest: are CO2 exchange and water status in the canopy affected? Plant Cell Environ 22:461–72.

    Google Scholar 

  • Felzer B, Kicklighter DW, Melillo JM, Wang C, Zhuang Q, Prinn R. 2004. Effects of ozone on net primary production and carbon sequestration in the Conterminous United States using a biogeochemistry model. Tellus 56B:230–48.

    CAS  Google Scholar 

  • Finzi AC, Moore DJ, DeLucia EH, Kim HS, Jackson RB, Lichter J, McCarthy H, Oren R, Pippen JS, Schlesinger WH. 2006. Progressive nitrogen limitation of ecosystem processes under elevated CO2 in a warm-temperate forest. Ecology 87:15–25.

    Article  PubMed  Google Scholar 

  • Han FX, Plodinec MJ, Su Y, Monts DL, Li Z. 2007. Terrestrial carbon pools in southeast and south-central United States. Climatic Change 84:191–202.

    Article  CAS  Google Scholar 

  • Hansen C, Yonavjak L, Clarke C, Minnemeyer S, Boisrobert L, Leach A, Schleeweis K. 2010. Southern forests for the future. World Resources Institute. http://www.wri.org/project/southern-forests.

  • Heck WW, Cure WW, Rawlings JO, Zaragoza LJ, Heagle AS, Heggestad HE, Kohut RJ, Kress LW, Temple PJ. 1984. Assessing impacts of ozone on agricultural crops: II. Crop yield functions and alternative exposure statistics. J Air Pollut Control Assoc 34:810–17.

    Google Scholar 

  • Homer C, Dewitz J, Fry J, Coan M, Hossain N, Larson C, Herold N, McKerrow A, VanDriel JN, Wickham J. 2007. Completion of the 2001 National Land Cover Database for the conterminous United States. Photogram Eng Remote Sens 73:337–41.

    Google Scholar 

  • Houghton RA. 2003. Revised estimates of the annual net flux of carbon to the atmosphere from changes in land use and land management 1850–2000. Tellus 55B:378–90.

    Google Scholar 

  • Houghton RA, Hackler JL, Lawrence KT. 1999. The U.S. carbon budget: contributions from land-use change. Science 285:574–8.

    Article  PubMed  CAS  Google Scholar 

  • Huntzinger DN, Post WM, Wei Y, Michalak AM, West TO, Jacobson AR, Baker IT, Chen JM, Davis KJ, Hayes DJ, Hoffman FM, Jain AK, Liu S, McGuire AD, Neilson RP, Poulter B, Raczka BM, Tian HQ, Thornton P, Tomelleri E, Viovy N, Xiao J, Zeng N, Zhao M, Cook R. 2012. North American Carbon Project (NACP) regional interim synthesis: terrestrial biospheric model intercomparison. Ecol Model 232:144–57. doi:10.1016/j.ecolmodel.2012.02.004.

    Article  CAS  Google Scholar 

  • Jain A, Yang X, Kheshgi H, McGuire AD, Post W, Kicklighter D. 2009. Nitrogen attenuation of terrestrial carbon cycle response to global environmental factors. Glob Biogeochem Cycles. doi:10.1029/2009GB003519.

    Google Scholar 

  • Johnson DW. 2006. Progressive N limitation in forests: review and implications for long-term responses to elevated CO2. Ecology 87:64–75.

    Article  PubMed  Google Scholar 

  • Karl TR, Melillo JM, Peterson TC. 2009. Global climate change impacts in the United States. Cambridge: Cambridge University Press.

    Google Scholar 

  • Liu M, Tian H, Chen G, Ren W, Zhang C, Liu J. 2008. Effects of land use and land cover change on evapotranspiration and water yield in China during the 20th century. J Am Water Resour Assoc (JAWRA) 44:1193–207. doi:10.1111/j.1752-1688.2008.00243.

    Article  CAS  Google Scholar 

  • Liu M, Tian H, Lu C, Xu X, Chen G, Ren W. 2012. Effects of multiple environment stresses on evapotranspiration and runoff over eastern China. J Hydrol 426–427:39–54.

    Article  Google Scholar 

  • Lu C, Tian H, Liu M, Ren W, Xu X, Chen GS, Zhang C. 2012. Effect of nitrogen deposition on China’s terrestrial carbon uptake in the context of multi-factor environmental changes. Ecol Appl 22:53–75.

    Article  PubMed  Google Scholar 

  • Luo Y, Su B, Currie WS, Dukes JS, Finzi A, Hartwig U, Hungate B, McMurtrie RE, Oren R, Parton WJ, Pataki DE, Shaw MR, Zak DR, Field CB. 2004. Progressive nitrogen limitation of ecosystem responses to rising atmospheric CO2. BioScience 54:731–9.

    Article  Google Scholar 

  • Luo Y, Gerten D, le Maire G, Parton WJ, Weng ES, Zhou XH, Keough C, Beier C, Ciais P, Cramer W, Dukes JS, Emmett B, Hanson PJ, Knapp A, Linder S, Nepstad D, Rustad L. 2008. Modelled interactive effects of precipitation, temperature, and CO2 on ecosystem carbon and water dynamics in different climatic zones. Glob Change Biol 14:1986–99.

    Article  Google Scholar 

  • Malmsheimer RW, Heffernan P, Brink S, Crandall D, Deneke F, Galik C, Gee E, Helms JA, McClure N, Mortimer M, Ruddell S, Smith M, Stewart J. 2008. Forest management solutions for mitigating climate change in the United States. J Forestry 106:115–73.

    Google Scholar 

  • McGuire AD, Sitch S, Clein JS, Dargaville R, Esser G, Foley J, Heimann M, Joos F, Kaplan J, Kicklighter DW, Meier RA, Melillo JM, Moore IIIB, Prentice IC, Ramankutty N, Reichenau T, Schloss A, Tian H, Williams LJ, Wittenberg U. 2001. Carbon balance of the terrestrial biosphere in the twentieth century: analyses of CO2, climate and land-use effects with four process-based ecosystem models. Glob Biogeochem Cycles 15:183–206.

    Article  CAS  Google Scholar 

  • McLaughlin SB, Nosal M, Wullschleger SD, Sun G. 2007. Interactive effects of ozone and climate on tree growth and water use in a Southern Appalachian forest in the USA. New Phytologist 174:109–24.

    Article  PubMed  CAS  Google Scholar 

  • McNulty SG, Boggs JL. 2010. A conceptual framework: redefining forest soil’s critical acid loads under a changing climate. Environ Pollut 158:2053–8.

    Article  PubMed  CAS  Google Scholar 

  • Melillo JM, Steudler PA, Aber JD, Newkirk K, Lux H, Bowles FP, Catricala C, Magill A, Ahrens T, Morrisseau S. 2002. Soil warming and carbon cycle feedbacks to the climate system. Science 298:2173–6.

    Article  PubMed  CAS  Google Scholar 

  • Mesinger F, DiMego G, Kalnay E, Shafran P, Ebisuzaki W, Jovic D, Woollen J, Rogers E, Berbery EH, Ek M, Fan Y, Grumbine R, Higgins W, Li H, Lin Y, Manikin G, Parrish D, Shi W. 2006. North American regional reanalysis. Bull Am Meteorol Soc. doi:10.1175/BAMS-B7-3-343.

    Google Scholar 

  • Miller DA, White RA. 1998. A conterminous United States multi-layer soil characteristics data set for regional climate and hydrology modeling. Earth Interact 2:1–26.

    Article  Google Scholar 

  • Myneni RB, Keeling CD, Tucker CJ, Asrar G, Nemani RR. 1997. Increased plant growth in the northern high latitudes from 1981 to 1991. Nature 386:698–702.

    Article  CAS  Google Scholar 

  • Norby RJ, DeLucia EH, Gielen B, Calfapietra C, Giardina CP, King JS, Ledford J, McCarthy HR, Moore DJP, Ceulemans R, De Angelis R, Finzi AC, Karnosky DF, Kubiske ME, Lukac M, Pregitzer KS, Scarascia-Mugnozza GE, Schlesinger WH, Oren R. 2005. Forest response to elevated CO2 is conserved across a broad range of productivity. Proc Natl Acad Sci 102:18052–6.

    Article  PubMed  CAS  Google Scholar 

  • Ollinger SV, Aber JD, Reich PB, Freuder RJ. 2002. Interactive effects of nitrogen deposition, tropospheric ozone, elevated CO2 and land use history on the carbon dynamics of northern hardwood forests. Glob Change Biol 8:545–62.

    Article  Google Scholar 

  • Oren R, Ellsworth DS, Johnsen KH, Phillips N, Ewers BE, Maier C, Schafer KVR, McCarthy H, Hendrey G, McNulty SG, Katul GG. 2001. Soil fertility limits carbon sequestration by forest ecosystems in a CO2- enriched atmosphere. Nature 411:469–72.

    Article  PubMed  CAS  Google Scholar 

  • Oreskes N, Shrader-Frechette K, Belitz K. 1994. Verification, validation, and confirmation of numerical models in earth sciences. Science 263:641–6.

    Article  PubMed  CAS  Google Scholar 

  • Pacala S, Birdsey R, Bridgham S, Conant RT, Davis K, Hales B, Houghton RA, Jenkins JC, Johnston M, Marland G, Paustian K. 2007. The North American carbon budget past and present. In: King AW, Dilling L, Zimmerman GP, Fairman DM, Houghton RA, Marland G, Rose AZ, Wilbanks TJ, Eds. The first state of the carbon cycle report (SOCCR): the North American carbon budget and implications for the global carbon cycle. Asheville: National Oceanic and Atmospheric Administration, National Climatic Data Center. p 29–36.

    Google Scholar 

  • Pan Y, Chen JM, Birdsey R, McCullough K, He L, Deng F. 2011. Age structure and disturbance legacy of North American forests. Biogeosciences 8:715–32.

    Article  Google Scholar 

  • Pardo LH, Templer PH, Goodale C, Duke S, Groffman P, Adams MB, Boeckx P, Boogs J, Campbell J, Colman B, Compton J, Emmett B, Gundersen P, Kjonaas J, Lovett G, Mack M, Magill A, Mbila M, Mitchell M, McGee G, McNulty S, Nadelhoffer K, Ollinger S, Ros D, Rueth H, Rustad L, Shaberg P, Schiff S, Schleppi P, Spoelstra J, Wessel W. 2006. Regional assessment of N saturation using foliar 15N. Biogeochemistry 80:143–71.

    Article  Google Scholar 

  • Peters W, Jacobson AR, Sweeney C, Andrews E, Conway TJ, Masarie K, Miller JB, Bruhwiler LMP, Pétron G, Hirsch I, Worthy DEJ, van der Werf GR, Randerson JT, Wennberg PO, Krol MC, Tans PP. 2007. An atmospheric perspective on North American carbon dioxide exchange: CarbonTracker. Proc Natl Acad Sci 104:18925–30.

    Article  PubMed  CAS  Google Scholar 

  • Popper KR. 1968. The logic of scientific discovery. New York: Harper Torchbooks.

    Google Scholar 

  • Pye JM 1988. Impact of ozone on the growth and yield of tress: a review. J Environ Qual 17:347–60.

    Google Scholar 

  • Rastetter EB. 1996. Validating models of ecosystem response to global change. Bioscience 46:190–8.

    Article  Google Scholar 

  • Rastetter EB, Ågren GI, Shaver GR. 1997. Responses of N-limited ecosystems to increased CO2: a balanced-nutrition, coupled-element-cycles model. Ecol Appl 7:444–60.

    Google Scholar 

  • Ramankutty N, Gibbs HK, Achard F, DeFries R, Foley JA, Houghton RA. 2007. Challenges to estimating carbon emissions from tropical deforestation. Glob Change Biol 13:51–66.

    Article  Google Scholar 

  • Reay DS, Dentener F, Smith P, Grace J, Feely RA. 2008. Global nitrogen deposition and carbon sinks. Nat Geosci 430:1–7.

    Google Scholar 

  • Ren W, Tian HQ, Chen GS, Liu ML, Zhang C, Chappelka A, Pan S. 2007a. Influence of ozone pollution and climate variability on grassland ecosystem productivity across China. Environ Pollut 149:327–35.

    Article  PubMed  CAS  Google Scholar 

  • Ren W, Tian H, Liu M, Zhang C, Chen G, Pan S, Felzer B, Xu X. 2007b. Effects of tropospheric ozone pollution on net primary productivity and carbon storage in terrestrial ecosystems of China. J Geophys Res 112:D22S09. doi:10.1029/2007JD008521.

  • Ren W, Tian H, Tao B, Chappelka A, Sun G, Lu C, Liu M, Chen G, Xu X. 2011a. Impacts of tropospheric ozone and climate change on net primary productivity and net carbon exchange of China’s forest ecosystems assessed with the dynamic land ecosystem model (DLEM). Glob Ecol Biogeogr 20:391–406.

    Article  Google Scholar 

  • Ren W, Tian HQ, Xu XF, Liu ML, Lu CQ, Chen GS, Mellio J, Reilly J, Liu JY. 2011b. Spatial and temporal patterns of CO2 and CH4 fluxes in China’s croplands in response to multifactor environmental changes. Tellus B 63:222–40.

    Article  CAS  Google Scholar 

  • Richardson AD, Anderson RS, Arain MA, other NACP Participants. 2012. Terrestrial biosphere models need better representation of vegetation phenology: results from the North American carbon program site synthesis. Glob Change Biol 18:566–84.

    Article  Google Scholar 

  • Ruddy BC, Lorenz DL, Mueller DK. 2006. County-level estimates of nutrient inputs to the land surface of the conterminous United States, 1982–2001. U.S. Geological Survey Scientific Investigations Report 2006-5012. http://pubs.usgs.gov/sir/2006/5012/.

  • Schimel D, House J, Hibbard K, Bousquet P, Ciais P, Peylin P, Apps M, Baker D, Bondeau A, Brasswell R, Canadell J, Churkina G, Cramer W, Denning S, Field C, Friedlingstein P, Goodale C, Heimann M, Houghton RA, Melillo J, Moore BIII, Murdiyarso D, Noble I, Pacala S, Prentice C, Raupach M, Rayner P, Scholes B, Steffen W, Wirth C. 2001. Recent patterns and mechanisms of carbon exchange by terrestrial ecosystems. Nature 414:169–72.

    Article  PubMed  CAS  Google Scholar 

  • Schimel D, Melillo JM, Tian H, McGuire AD, Kicklighter DW, Kittel T, Rosenbloom N, Running SW, Thornton P, Ojima D, Parton W, Kelly R, Sykes M, Neilson R, Rizzo B. 2000. Contribution of increasing CO2 and climate to carbon storage by ecosystems in the United States. Science 287:2004–6.

    Article  PubMed  CAS  Google Scholar 

  • Schwalm CR, Williams CA, Schaefer K, NACP participants. 2010. A model-data intercomparison of CO2 exchange across North America: results from the North American carbon program site synthesis. J Geophys Res 115:G00H05. doi:10.1029/2009JG001229.

  • Smith WB, Miles PD, Perry CH, Pugh SA. 2009. Forest Resources of the United States, 2007. General Technical Report WO-78. U.S. Department of Agriculture, Forest Service, Washington, DC.

  • Sulman B, Desai A, Schroeder N, Ricciuto D, Barr A, Richardson A, Flanagan L, Lafleur P, Tian H, Chen G, Grant R, Poulter B, Verbeeck H, Ciais P, Ringeval B, Baker I, Schaefer K, Luo Y, Weng E. 2012. Impact of hydrological variations on modeling of peatland CO2 fluxes: results from the North American carbon program site synthesis. J Geophys Res. doi:10.1029/2011JG001862.

  • Thenkabail PS, Biradar CM, Turral H, Noojipady P, Li YJ, Vithanage J, Dheeravath V, Velpuri M, Schull M, Cai XL, Dutta R. 2006. An irrigated area map of the world (1999) derived from remote sensing. Research Report 105, International Water Management Institute, Colombo, Sri Lanka.

  • Tian H, Melillo JM, Kicklighter DW, McGuire AD, Helfrich J. 1999. The sensitivity of terrestrial carbon storage to historical atmospheric CO2 and climate variability in the United States. Tellus 51B:414–52.

    CAS  Google Scholar 

  • Tian H, Chen G, Liu M, Zhang C, Sun G, Lu C, Xu X, Ren W, Pan S, Chappelka A. 2010a. Model estimates of ecosystem net Primary productivity, evapotranspiration, and water use efficiency in the southern United States during 1895–2007. For Ecol Manag 259:1311–27.

    Article  Google Scholar 

  • Tian H, Xu X, Liu M, Ren W, Zhang C, Chen G, Lu C. 2010b. Spatial and temporal patterns of CH4 and N2O fluxes in terrestrial ecosystems of North America during 1979–2008: application of a global biogeochemistry model. Biogeosciences 7:2673–94.

    Article  CAS  Google Scholar 

  • Tian H, Xu X, Lu C, Liu M, Ren W, Chen G, Melillo J, Liu J. 2011a. Net exchanges of CO2, CH4, and N2O between China’s terrestrial ecosystems and the atmosphere and their contributions to global climate warming. J Geophys Res G02011, doi:10.1029/2010JG001393.

  • Tian H, Melillo J, Lu C, Kicklighter D, Liu M, Ren W, Xu X, Chen G, Zhang C, Pan S, Liu J, Running S. 2011b. China’s terrestrial carbon balance: contribution of multiple global change factors. Global Biogeochemical Cycles 25, GB1007, doi:10.1029/2010GB003838.

  • Van Aardenne J, Dentener F, Olivier J, Goldewijk CK, Lelieveld J. 2001. A 1° × 1° resolution data set of historical anthropogenic trace gas emissions for the period 1890–1990. Glob Biogeochem Cycles 15:909–28.

    Article  Google Scholar 

  • Wear DN. 2002. Land use. In: Wear DN, Greis JG, Eds. Southern forest resource assessment. pp. 153–174. Tech. Rep. GTR SRS-53. USDA, Forest Service, Washington, DC. http://www.srs.fs.usda.gov/sustain/report/.

  • Woodwell GM, Mackenzie FT, Houghton RA, Apps MJ, Gorham E, Davidson EA. 1995. Will the warming speed the warming? In: Woodwell GM, MacKenzie FT, Eds. Biotic feedbacks in the global climatic system: will the warming feed the warming?. Oxford: Oxford University Press. p 393–411.

    Google Scholar 

  • Xu X, Tian H, Zhang C, Liu M, Ren W, Chen GS, Lu C, Bruhwiler L. 2010. Attribution of spatial and temporal variations in terrestrial methane flux over North America. Biogeosciences 7:3637–55.

    Article  CAS  Google Scholar 

  • Zhang C, Tian H, Chappelka A, Ren W, Chen H, Pan S, Liu M, Styers DM, Chen GS, Wang Y. 2007. Impacts of climatic and atmospheric changes on carbon dynamics in the Great Smoky Mountains. Environ Pollut 149:336–47.

    Article  PubMed  CAS  Google Scholar 

  • Zhang C, Tian H, Wang Y, Zeng T, Liu Y. 2010. Predicting response of fuel load to future changes in climate and atmospheric composition in the southern United States. For Ecol Manag 260:556–64.

    Article  Google Scholar 

  • Zhang C, Tian H, Chen G, Chappelka A, Xu X, Ren W, Hui D, Liu M, Lu C, Pan S, Lockaby G. 2012. Impacts of urbanization on carbon balance of the Southern United States from 1945 to 2007. Environ Pollut 164:89–101. doi:10.1016/j.envpol.2012.01.020.

    Article  PubMed  CAS  Google Scholar 

  • Zhao M, Running SW. 2010. Drought-induced reduction in global terrestrial net primary production from 2000 through 2009. Science 329:940–3.

    Article  PubMed  CAS  Google Scholar 

  • Zhou XH, Weng ES, Luo YQ. 2008. Modeling patterns of nonlinearity in ecosystem responses to temperature, CO2, and precipitation changes. Ecol Appl 18:453–66.

    Google Scholar 

Download references

Acknowledgments

This study has been supported by the US Department of Energy National Institute for Climate Change Research (NICCR) Program (DUKE-UN-07-SC-NICCR-1014), NASA Interdisciplinary Science Program (NNX10AU06G), NASA Terrestrial Ecology Program, Alabama Agricultural Experiment Station Research Program (AAES), and the Southern Forest Research Partnership. We would also thank Dr. Edward Rastetter and two anonymous reviewers who have provided thoughtful comments and suggestions, which led to a major improvement in the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hanqin Tian.

Additional information

Author Contributions

H. Tian, A. Chappelka, S. Pan, G. Sun, S. McNulty, G. Lockaby and E. Vance designed the study; G. Chen, C. Zhang, M. Liu, W. Ren, X. Xu, C. Lu, H. Chen, D. Hui performed research; H.Tian, G. Chen and C. Zhang wrote the manuscript and all others contributed ideas to manuscript development.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tian, H., Chen, G., Zhang, C. et al. Century-Scale Responses of Ecosystem Carbon Storage and Flux to Multiple Environmental Changes in the Southern United States. Ecosystems 15, 674–694 (2012). https://doi.org/10.1007/s10021-012-9539-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10021-012-9539-x

Keywords

Navigation