Skip to main content

Advertisement

Log in

Impacts of Urbanization on Ecosystem Goods and Services in the U.S. Corn Belt

  • Published:
Ecosystems Aims and scope Submit manuscript

Abstract

In this study, three cities located in the U.S. Corn Belt are evaluated for impacts of past (1992–2001) and projected (2001–2030) urban expansion on ecosystem goods and services, with a specific focus on changes in energy balance, hydrology, and productivity. Scenarios for high-, medium- and low-density urban areas are simulated using a dynamic agro-ecosystem model (Agro-IBIS), by incorporating new parameterizations for impervious surfaces and turf grass. Moderate Resolution Imaging Spectroradiometer (MODIS) 500-m albedo data and remote sensing-derived 30-m resolution maps from the U.S. National Land Cover Database are used as model input to simulate biogeochemical, thermodynamic, and hydrological cycles for a range of land-cover types in each region. The results show that the expanding urban areas have a significant impact on each city’s capacity to regulate climate and flooding. High-density urban areas, for instance, have soil surface temperatures up to 6°C higher than soils within natural and managed ecosystems. Expansion of turf grass in residential areas could require an additional 8–105 million m3 of water use annually, which increases runoff by 15–48% and reduces the capacity to respond/adapt to flooding. Finally, the analysis shows that net primary productivity (NPP) decreases as expected due to the removal of cropland, forests, and grasslands in favor of development, but increased urban turf grass provides an annual offset of 40–210 g C m−2. Urban expansion through 2030 is estimated to lower total annual crop production by 8.1, 8.6, and 16.7% for the Madison, Peoria, and Indianapolis regions, respectively. Given current projections for city growth to exceed 2–3% per year in the north-central U.S., urban expansion across a nine-state region in the Corn Belt could potentially take an additional 210,000–310,000 ha of farmland out of production annually at a time when demand for food, fuel, and fiber is increasing. Because conversion of cropland to urban uses is nearly always unidirectional, any changes to ecosystem goods and services due to urbanization are likely to be permanent and irreversible.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12

Similar content being viewed by others

References

  • Alberti M. 2005. The effects of urban patterns on ecosystem function. Int Reg Sci Rev 28:168–219.

    Article  Google Scholar 

  • Bairoch P. 1988. Cities and economic development: from the dawn of history to the present. Chicago (IL): University of Chicago Press. p 574.

    Google Scholar 

  • Beighley RE, Kargar M, He Y. 2009. Effects of impervious area estimation methods on simulated peak discharges. J Hydrol Eng 4:388–98.

    Article  Google Scholar 

  • Bjorklund J, Limburg KE, Rydberg T. 1999. Impact of production intensity on the ability of the agricultural landscape to generate ecosystem services: an example from Sweden. Ecol Econ 29:269–91.

    Article  Google Scholar 

  • Bonfils C, Lobell D. 2007. Empirical evidence for a recent slowdown in irrigation-induced cooling. Proc Natl Acad Sci USA 104:13582–7.

    Article  PubMed  CAS  Google Scholar 

  • Bornstein RD, Lin Q. 2000. Urban heat islands and summertime convective thunderstorms in Atlanta: three case studies. Atmos Environ 34:507–16.

    Article  CAS  Google Scholar 

  • Brabec E, Schulte S, Richards PL. 2002. Impervious surfaces and water quality: a review of current literature and its implications for watershed planning. J Plan Lit 16:499–514.

    Article  Google Scholar 

  • Brovkin V, Ganopolski A, Svirezhev Y. 1997. A continuous climate-vegetation classification for use in climate-biosphere studies. Ecol Model 101:251–61.

    Article  Google Scholar 

  • Brown TC, Bergstrom JC, Loomis JB. 2007. Defining, valuing and providing ecosystem goods and services. Nat Resour J 47:329–76.

    Google Scholar 

  • Canham CD, Cole JJ, Lauenroth WK, Eds. 2003. Models in ecosystem science. Princeton (NJ): Princeton University Press. p 456.

    Google Scholar 

  • Clarke JA. 2001. Energy simulation in building design. Oxford: Butterworth Heinemann. p 384.

    Google Scholar 

  • Donner SD, Coe MT, Lenters JD, Twine TA, Foley JA. 2002. Modeling the impact of hydrological changes on nitrate transport in the Mississippi River Basin from 1955–1994. Global Biogeochem Cycles . doi:10.1029/2001GB001396.

    Google Scholar 

  • Donner S, Kucharik CJ. 2003. Assessing the impacts of climate variability and land management on crop yield and nitrate flux across the Upper Mississippi Basin. Global Biogeochem Cycles 17:1085.

    Article  Google Scholar 

  • Donner S, Kucharik CJ. 2008. Corn-based ethanol production compromises goal of reducing nitrogen export by the Mississippi River. Proc Natl Acad Sci USA 105:4513–18.

    Article  PubMed  CAS  Google Scholar 

  • Ellis EC, Ramankutty N. 2008. Putting people in the map: anthropogenic biomes of the world. Front Ecol Environ 6:439–47.

    Article  Google Scholar 

  • Environmental Protection Agency (EPA). 2008. Outdoor water use in the United States. Washington, DC: Office of Wastewater Management.

    Google Scholar 

  • Fischer EM, Schar C. 2010. Consistent geographical patterns of changes in high-impact European heat waves. Nat Geosci 3:398–403.

    Article  CAS  Google Scholar 

  • Foley J, De Fries R, Asner G, Barford C, Bonan G, Carpenter S, Chapin FS, Coe M, Daily G, Gibbs H, Helkowski J, Holloway T, Howard E, Kucharik C, Monfreda C, Patz J, Prentice C, Ramankutty N, Snyder P. 2005. Global consequences of land use. Science 309:570–4.

    Article  PubMed  CAS  Google Scholar 

  • Foley JA, Prentice IC, Ramankutty N, Lewis S, Pollard D, Sitch S, Haxeltine A. 1996. An integrated biosphere model of land surface processes, terrestrial carbon balance, and vegetation dynamics. Global Biogeochem Cycles 10:603–28.

    Article  CAS  Google Scholar 

  • Fouillet A, Rey G, Laurent F, Pavillon G, Bellec S, Guihenneuc-Jouyaux C, Clavel J, Jougla E, Hemon D. 2006. Excess mortality related to the August 2003 heat wave in France. Int Arch Occup Environ Health 80:16–24.

    Article  PubMed  CAS  Google Scholar 

  • Friend AD, Stevens AK, Knox RG, Cannell MGR. 1997. A process-based, terrestrial biosphere model of ecosystem dynamics (Hybrid v3.0). Ecol Modell 95:249–87.

    Article  CAS  Google Scholar 

  • Frumkin H. 2002. Urban sprawl and public health. Public Health Rep 117:201–17.

    PubMed  Google Scholar 

  • Fry JA, Coan MJ, Homer CG, Meyer DK, Wickham DK. 2009. Completion of the National Land Cover Database (NLCD) 1992–2001 Land Cover Change Retrofit product. U.S. Geological Survey Open-File Report. pp 1379–97.

  • Fuhrer J. 2003. Agroecosystem responses to combinations of elevated CO2, ozone, and global climate change. Agric Ecosyst Environ 97:1–20.

    Article  CAS  Google Scholar 

  • George K, Ziska LH, Bunce JA, Quebedeaux B. 2007. Elevated atmospheric CO2 concentration and temperature across an urban–rural transect. Atmos Environ 41:7654–65.

    Article  CAS  Google Scholar 

  • Greening America’s Capitals. 2011. Joint project of the U.S. Environmental Protection Agency. Washington, DC: Department of Housing and Department of Transportation. Available at http://www.epa.gov/smartgrowth.

  • Haase JE, Lathrop RG. 2003. Land resource impact indicators of urban sprawl. Appl Geogr 23:159–75.

    Article  Google Scholar 

  • Haxeltine A, Prentice IC. 1996. BIOME3: an equilibrium biosphere model based on ecophysiological constraints, resource availability and competition among plant functional types. Global Biogeochem Cycles 10:693–709.

    Article  CAS  Google Scholar 

  • Holgate ST, Samet JM, Koren HS, Maynard RL, Eds. 1999. Air pollution and health. London: Academic Press. p 1065.

    Google Scholar 

  • Homer C, Huang C, Yang L, Wylie B, Coan M. 2004. Development of a 2001 National Land-Cover Database for the United States. Photogramm Eng Remote Sens 70:829–40.

    Google Scholar 

  • Imhoff ML, Bounoua L, DeFries R, Lawrence WT, Stutzer D, Tucker CJ, Ricketts T. 2004. The consequences of urban land transformation on net primary productivity in the United States. Remote Sens Environ 89:434–43.

    Article  Google Scholar 

  • Imhoff ML, Lawrence WT, Elvidge C, Paul T, Levine E, Privalsky M, Brown, V. 1997. Using nighttime DMSP/OLS images of city lights to estimate the impact of urban land use on soil resources in the United States. Remote Sens Environ 59:105–17.

    Article  Google Scholar 

  • Jackson L. 2003. The relationship of urban design to human health and condition. Landsc Urban Plan 64:191–200.

    Article  Google Scholar 

  • Kalnay E, Kanamits M, Kistler R, Deaven D, Gandin L, Iredell M, Saha S, White G, Woollen J, Zhu Y, Leetmaa A, Reynolds R, Chelliah M, Ebisuzaki W, Higgins W, Janowiak J, Mo K, Ropelewski C, Wang J, Jenne R, Joseph D. 1996. The NCEP/NCAR 40-year reanalysis project. Bull Am Meteorol Soc 77:437–71.

    Article  Google Scholar 

  • Khan SM, Simpson RW. 2001. Effect of a heat island on the meteorology of a complex urban airshed. Bound Layer Meteorol 100:487–506.

    Article  Google Scholar 

  • Kistler R, Kalnay E, Collins W, Saha S, White G, Woollen J, Chelliah M, Ebisuzaki W, Kanamitsu M, Kousky V, Dool H, Jenne R, Fiorino M. 2001. The NCEP-NCAR 50-year reanalysis: monthly means CD-ROM and documentation. Bull Am Meteorol Soc 82:247–68.

    Article  Google Scholar 

  • Kitchell JF. 1992. Food web management: a case study of Lake Mendota. New York: Springer-Verlag.

  • Knapp S, Kuhn I, Mosbrugger V, Klotz S. 2008. Challenging urban species diversity: contrasting phylogenetic patterns across plant functional groups in Germany. Ecol Lett 11:1054–64.

    Article  PubMed  Google Scholar 

  • Kreuter UP, Harris HG, Matlock MD, Lacey RE. 2001. Change in ecosystem service values in the San Antonio area, Texas. Ecol Econ 39:333–46.

    Article  Google Scholar 

  • Kucharik CJ. 2003. Evaluation of a process-based agro-ecosystem model (Agro-IBIS) across the U.S. cornbelt: simulations of the inter-annual variability in maize yield. Earth Interact 7:1–33.

    Article  Google Scholar 

  • Kucharik CJ, Brye KR. 2003. Integrated BIosphere Simulator (IBIS) yield and nitrate loss predictions for Wisconsin maize receiving varied amounts of nitrogen fertilizer. J Environ Qual 32:247–68.

    Article  PubMed  CAS  Google Scholar 

  • Kucharik CJ, Foley JA, Delire C, Fisher VA, Coe MT, Lenters JD, Young-Molling C, Ramankutty N, Norman JM, Gower ST. 2000. Testing the performance of a dynamic global ecosystem model: water balance, carbon balance, and vegetation structure. Global Biogeochem Cycles 14:795–825.

    Article  CAS  Google Scholar 

  • Kucharik CJ, Ramankutty N. 2005. Trends and variability in U.S. corn yields over the Twentieth Century. Earth Interact 9:1–29.

    Article  Google Scholar 

  • Kucharik CJ, Twine TE. 2007. Residue, respiration, and residuals: evaluation of a dynamic agroecosystem model using eddy flux measurements and biometric data. Agric For Meteorol 146:134–58. doi:10.1016/j.agrformet.2007.05.011.

    Article  Google Scholar 

  • Martilli A, Clappier A, Rotach M. 2002. An urban surface exchange parameterisation for mesoscale models. Bound Layer Meteorol 204:261–304.

    Article  Google Scholar 

  • Masson V. 2006. Urban surface modelling and the meso-scale impact of cities. Theor Appl Climatol 84:35–45.

    Article  Google Scholar 

  • McCann BA, Ewing, R. 2003. Measuring the health effects of sprawl. Surface Transportation Policy Project, Smart Growth America. Available at http://www.smartgrowthamerica.org/report/HealthSprawl8.03.pdf.

  • McCarthy MP, Best MJ, Betts RA. 2010. Climate change in cities due to global warming and urban effects. Geophys Res Lett 37. doi:10.1029/2010GL042845.

  • McDonnell MJ, Pickett STA, Groffman P, Bohlen P, Pouyat RV, Zipperer WC, Parmelee RW, Carreiro MM, Medley K. 1997. Ecosystem processes along an urban-to-rural gradient. Urban Ecosyst 1:21–36.

    Article  Google Scholar 

  • McKinney ML. 2002. Urbanization, biodiversity, and conservation. Bioscience 52:883–90.

    Article  Google Scholar 

  • Meehl GA, Tebaldi C. 2004. More intense, more frequent, and longer lasting heat waves in the 21st century. Science 305:994–7.

    Article  PubMed  CAS  Google Scholar 

  • Milesi C, Elvidge CD, Nemani RR, Running SW. 2003. Assessing the impact of urban land development on net primary productivity in the southeastern United States. Remote Sens Environ 86:401–10.

    Article  Google Scholar 

  • Milesi C, Running SW, Elvidge CD, Dietz JB, Tuttle BT, Nemani RR. 2005. Mapping and modeling the biogeochemical cycling of turf grasses in the United States. Environ Manage 36:426–38.

    Article  PubMed  Google Scholar 

  • Millennium Ecosystem Assessment (MEA). 2005. Ecosystems and human well-being: synthesis. Washington, DC: Island Press.

  • Miller DA, White RA. 1998. A conterminous United States multi-layer soil characteristics data set for regional climate and hydrology modeling. Earth Interact 2:1–26.

    Article  Google Scholar 

  • Mills G. 2007. Cities as agents of global change. Int J Climatol 27:1849–57.

    Article  Google Scholar 

  • Mishra V, Cherkauer KA, Niyogi D, Lei M, Pijanowski BC, Ray DK, Bowling LC, Yang G. 2010. A regional scale assessment of land use/land cover and climatic changes on water and energy cycle in the upper Midwest United States. Int J Climatol. doi:10.1002/joc.2095.

    Google Scholar 

  • Mitchell TD, Jones PD. 2005. An improved method of constructing a database of monthly climate observations and associated high resolution grids. Int J Climatol 25:1693–712. doi:10.1002/joc.1181.

    Google Scholar 

  • Newman P, Kenworthy J. 1996. The land use–transport connection. Land Use Policy 13:1–22.

    Article  Google Scholar 

  • Offerle B, Grimmond C, Fortuniak K, Pawlak W. 2006. Intraurban differences of surface energy fluxes in a central European city. J Appl Meteorol Climatol 45:125–36.

    Article  Google Scholar 

  • Offerle B, Grimmond CSB, Oke TR. 2003. Parameterization of net all-wave radiation for urban areas. J Appl Meteorol Climatol 42:1157–73.

    Article  Google Scholar 

  • Oke TR. 1982. The energetic basis of the urban heat island. Q J R Meteorol Soc 108:1–24.

    Google Scholar 

  • Oke TR. 1987. Boudary layer climates. New York: Routledge. p 318.

    Google Scholar 

  • Oleson KW, Bonan GB, Feddema J, Vertenstein M, Grimmond CSB. 2008. An urban parameterization for a global climate model: 1. Formulation and evaluation for two cities. J Appl Meteorol Climatol 47:1038–60.

    Article  Google Scholar 

  • Patz JA, Campbell-Lendrum D, Holloway T, Foley JA. 2005. Impact of regional climate change on human health. Nature 438:310–17. doi:10.1038.

    Article  PubMed  CAS  Google Scholar 

  • Patz, JA, Olson, S. 2006. Climate change and health: global to local influences on disease risk. Ann Trop Med 100:535–549.

    Article  CAS  Google Scholar 

  • Pijanowski BC, Pithadia S, Shellito BA, Alexandridis K. 2005. Calibrating a neural network-based urban change model for two metropolitan areas of the Upper Midwest of the United States. Int J Geogr Inf Sci 19:197–215.

    Article  Google Scholar 

  • Piringer M, Grimmond CSB, Joffre SM, Mestayer P, Middleton DR, Rotach MW, Baklanov A, De Ridder K, Ferreira J, Guilloteau E, Karppinen A, Martilli A, Masson V, Tombrou M. 2002. Investigating the surface energy balance in urban areas—recent advances and future needs. Water Air Soil Pollut Focus 2:1–16.

    Google Scholar 

  • Ramankutty N, Foley JA, Olejniczak NJ. 2002. People on the land: changes in global population and cropland during the 20th century. Ambio 31:251–7.

    PubMed  Google Scholar 

  • Robbins P, Birkenholtz T. 2003. Turfgrass revolution: measuring the expansion of the American lawn. Land Use Policy 20:181–94.

    Article  Google Scholar 

  • Sailor DJ, Lu L. 2004. A top-down methodology for developing diurnal and seasonal anthropogenic heating profiles for urban areas. Atmos Environ 38:2737–48.

    Article  CAS  Google Scholar 

  • Sanchez-Rodriguez R, Seto KC, Simon D, Solecki W, Kraas F, Laumann G. 2005. IHDP Science Plan: urbanization and global environmental change. Bonn: International Human Dimensions Programme on Global Environmental Change Report No. 15.

  • Savva Y, Szlavecz K, Pouyat RV, Groffman PM, Heisler G. 2010. Effects of land use and vegetation cover on soil temperature in an urban ecosystem. Soil Sci Soc Am J 74:469–80.

    Article  CAS  Google Scholar 

  • Schaaf CB, Gao F, Strahler A, Lucht W, Li X, Tsang T, Strugnell N, Zhang X, Jin Y, Muller J, Lewis P, Barnsley M, Hobson P, Disney M, Roberts G, Dunderdale M, Doll C, d’Entremont R, Hu B, Liang S, Privette J, Roy D. 2002. First operational BRDF albedo nadir reflectance products from MODIS. Remote Sens Environ 83:135–48.

    Article  Google Scholar 

  • Schneider A, Friedl MA, Potere D. 2009. A new map of global urban extent from MODIS satellite data. Environ Res Lett 4:044003. doi:10.1088/1748-9326/4/4/044003.

    Article  Google Scholar 

  • Scholze M, Bondeau A, Ewert F, Kucharik C, Priess J, Smith P. 2005. Advances in large-scale crop modeling. EOS Trans Am Geophys Union 86:245–7.

    Article  Google Scholar 

  • Shen W, Wu J, Grimm B, Hope D. 2008. Effects of urbanization-induced environmental changes on ecosystem functioning in the Phoenix metropolitan region. Ecosystems 11:138–55.

    Article  CAS  Google Scholar 

  • Shepherd M. 2005. A review of current investigations of urban-induced rainfall and recommendations for the future. Earth Interact 9:1–27.

    Article  Google Scholar 

  • Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt K, Tignor M, Miller H, Eds. 2007. Climate Change 2007: the physical science basis. Contribution of Working Group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge: Cambridge University Press.

  • Souch C, Grimmond S. 2006. Applied climatology: urban climate. Prog Phys Geogr 30:270–9.

    Article  Google Scholar 

  • Throssell CS, Lyman GT, Johnson M, Stacey G. 2009. Golf course environmental profile measures: water use, source, cost, quality, management and conservation strategies. Appl Turfgrass Sci . doi:10.1094/ATS-20090129-01-RS.

    Google Scholar 

  • Twine TE, Kucharik CJ. 2008. Evaluating a terrestrial ecosystem model with satellite information of greenness. J Geophys Res. doi:10.1029/2007JG000599.

    Google Scholar 

  • United Nations Department of Economic and Social Affairs, Population Division. 2011. World urbanization prospects: the 2010 revision. New York: United Nations Publications.

    Google Scholar 

  • U.S. Census Bureau. 2009. Annual estimates of the population of metropolitan and micropolitan statistical areas: April 1, 2000 to July 1, 2009 CBSA-EST2009-01. U.S. Census Bureau, Population Division. Available at http://www.census.gov.

  • U.S. Department of Agriculture—National Agriculture Statistics Service (USDA-NASS). 2010. Quick Stats: Agricultural Statistics Data Base. Available at http://www.nass.usda.gov:81/ipedb/.

  • Woodward FI, Lomas MR, Betts RA. 1998. Vegetation-climate feedbacks in a greenhouse world. Philos Trans R Soc Lond Ser B 353:29–38.

    Article  Google Scholar 

  • World Bank. 2008. World development indicators. Available at http://econ.worldbank.org.

  • Yang L, Huang C, Homer C, Wylie B, Coan M. 2002. An approach for mapping large-area impervious surfaces: synergistic use of Landsat 7 ETM+ and high spatial resolution imagery. Can J Remote Sens 29:230–40.

    Article  Google Scholar 

Download references

Acknowledgments

The authors wish to thank Ankur Desai and Pete Nowak for helpful comments on an earlier draft of this article. This study was made possible by the Roy F. Weston Fellowship in Sustainability Studies, and the University of Wisconsin’s graduate studies program. CJK was supported by the U.S. Department of Energy’s Office of Science through the Midwestern Regional Center for the National Institute for Climatic Change Research at Michigan Technological University, under Award Number DE-FC02-06ER64158.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Annemarie Schneider.

Additional information

Author Contributions

All three authors contributed to the design and implementation of the study.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schneider, A., Logan, K.E. & Kucharik, C.J. Impacts of Urbanization on Ecosystem Goods and Services in the U.S. Corn Belt. Ecosystems 15, 519–541 (2012). https://doi.org/10.1007/s10021-012-9519-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10021-012-9519-1

Keywords

Navigation