Skip to main content

Advertisement

Log in

Size of Precipitation Pulses Controls Nitrogen Transformation and Losses in an Arid Patagonian Ecosystem

  • Published:
Ecosystems Aims and scope Submit manuscript

Abstract

Arid ecosystems receive precipitation pulses of different sizes that may differentially affect nitrogen (N) losses and N turnover during the growing season. We designed a rainfall manipulation experiment in the Patagonian steppe, southern Argentina, where we simulated different precipitation patterns by adding the same amount of water in evenly spaced three-small rainfall events or in one-single large rainfall event, three times during a growing season. We measured the effect of the size of rainfall pulses on N mineralization and N losses by denitrification, ammonia volatilization, and nitrate and ammonia leaching. Irrigation pulses stimulated N mineralization (P < 0.05), with small and frequent pulses showing higher responses than large pulses (P < 0.10). Irrigation effects were transient and did not result in changes in seasonal net N mineralization suggesting a long-term substrate limitation. Water pulses stimulated gaseous N losses by denitrification, with large pulses showing higher responses than small pulses (P < 0.05), but did not stimulate ammonia volatilization. Nitrate leaching also was higher after large than after small precipitation events (P < 0.05). Small events produced higher N transformations and lower N losses by denitrification and nitrate leaching than large events, which would produce higher N availability for plant growth. Climate change is expected to increase the frequency of extreme precipitation events and the proportion of large to small rainfall events. Our results suggest that these changes would result in reduced N availability and a competitive advantage for deep-rooted species that prefer nitrate over ammonia. Similarly, the ammonium:nitrate ratio might decrease because large events foster nitrate losses but not ammonium losses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  • Austin AT, Yahdjian L, Stark JM, Belnap J, Norton U, Porporato A, Ravetta D, Schaeffer SM. 2004. Water pulses and biogeochemical cycles in arid and semiarid ecosystems. Oecologia 141:221–35.

    Article  PubMed  Google Scholar 

  • Báez S, Fargione J, Moore DI, Collins SL, Gosz JR. 2007. Atmospheric nitrogen deposition in the northern Chihuahuan desert: Temporal trends and potential consequences. J Arid Environ 68:640–51.

    Article  Google Scholar 

  • Barrett JE, McCulley RL, Lane DR, Burke IC, Lauenroth WK. 2002. Influence of climate variability on plant production and N-mineralization in Central US grasslands. J Veg Sci 13:383–94.

    Article  Google Scholar 

  • Canfield R. 1941. Application of the line interception method in sampling range vegetation. J For 39:388–94.

    Google Scholar 

  • Cui M, Caldwell MM. 1997. A large ephemeral release of nitrogen upon wetting of dry soil and corresponding root responses in the field. Plant Soil 191:291–9.

    Article  CAS  Google Scholar 

  • Easterling DR, Meehl GA, Parmesan C, Changnon SA, Karl TR, Mearns LO. 2000. Climate extremes: observations, modeling, and impacts. Science 289:2068–74.

    Article  CAS  PubMed  Google Scholar 

  • Evans RD, Ehleringer JR. 1993. A break in the nitrogen cycle in aridlands? Evidence from δ15N of soils. Oecologia 94:314–17.

    Article  Google Scholar 

  • Evans RD, Ehleringer JR. 1994. Water and nitrogen dynamics in an arid woodland. Oecologia 99:233–42.

    Article  Google Scholar 

  • Galloway JN, Dentener FJ, Capone DG, Boyer EW, Howarth RW, Seitzinger SP, Asner GP, Cleveland CC, Green PA, Holland EA, Karl DM, Michaels AF, Porter JH, Townsend AR, Vörösmarty CJ. 2004. Nitrogen cycles: past, present, and future. Biogeochemistry 70:153–226.

    Article  CAS  Google Scholar 

  • Galloway JN, Townsend AR, Erisman JW, Bekunda M, Cai Z, Freney JR, Martinelli LA, Seitzinger SP, Sutton MA. 2008. Transformation of the nitrogen cycle: recent trends, questions, and potential solutions. Science 320:889–92.

    Article  CAS  PubMed  Google Scholar 

  • Golluscio RA, León RJC, Perelman SB. 1982. Caracterización fitosociológica de la estepa del Oeste de Chubut; su relación con el gradiente ambiental. Bol Soc Arg Bot 21:299–324.

    Google Scholar 

  • Golluscio RA, Sala OE, Lauenroth WK. 1998. Differential use of large summer rainfall events by shrubs and grasses: a manipulative experiment in the Patagonian steppe. Oecologia 115:17–25.

    Article  Google Scholar 

  • Groffman PM, Tiedje JM. 1988. Denitrification hysteresis during wetting and drying cycles in soil. Soil Sci Soc Am J 52:1626–9.

    CAS  Google Scholar 

  • Groffman PM, Rice CW, Tiedje JM. 1993. Denitrification in a tallgrass prairie landscape. Ecology 74:855–62.

    Article  Google Scholar 

  • Groisman PY, Karl TR, Easterling DA, Knight RW, Jamason PF, Hennessy KJ, Suppiah R, Page CM, Wibig J, Fortuniak K, Razuvaev VN, Douglas A, Forland E, Zhai P. 1999. Changes in the probability of heavy precipitation: important indicators of climatic change. Clim Change 42:243–83.

    Article  Google Scholar 

  • Gutierrez JR, Aguilera LE, Armesto JJ. 1992. The effects of water and macronutrients addition on aboveground biomass production of annual plants in an old field from a coastal desert site of north-central Chile. Rev Chil Hist Nat 65:83–90.

    Google Scholar 

  • Hooper DU, Johnson L. 1999. Nitrogen limitation in dryland ecosystems: responses to geographical and temporal variation in precipitation. Biogeochemistry 46:247–93.

    CAS  Google Scholar 

  • Howarth R, Billen G, Swaney D, Townsend A, Jaworski N, Lajtha K, Downing JA, Elmgren R, Caraco N, Jordan T, Berendse F, Freney J, Kudeyarov V, Murdoch P, Zhao-Liang Z. 1996. Regional nitrogen budgets and riverine N & P fluxes for the drainages to the North Atlantic Ocean: natural and human influences. Biogeochemistry 35:75–139.

    Article  CAS  Google Scholar 

  • Huntington TG. 2006. Evidence for intensification of the global water cycle: review and synthesis. J Hydrol 319:83–95.

    Article  Google Scholar 

  • Krueger-Mangold J, Sheley R, Engel R, Jacobsen J, Svejcar T, Zabinski C. 2004. Identification of the limiting resource within a semi-arid plant association. J Arid Environ 58:309–20.

    Article  Google Scholar 

  • Lajtha K. 1988. The use of ion-exchange resin bags for measuring nutrient availability in an arid ecosystem. Plant Soil 105:105–11.

    Article  CAS  Google Scholar 

  • Le Houérou HN, Bingham RL, Skerbek W. 1988. Relationship between the variability of primary production and the variability of annual precipitation in world arid lands. J Arid Environ 15:1–18.

    Google Scholar 

  • LeBauer DS, Treseder KK. 2008. Nitrogen limitation of net primary productivity in terrestrial ecosystems is globally distributed. Ecology 89:371–9.

    Article  PubMed  Google Scholar 

  • López NI, Austin AT, Sala OE, Méndez BS. 2003. Controls on nitrification in water-limited ecosystem: experimental inhibition of ammonia-oxidising bacteria in the Patagonian steppe. Soil Biol Biochem 35:1609–13.

    Article  Google Scholar 

  • McCalley CK, Sparks JP. 2008. Controls over nitric oxide and ammonia emissions from Mojave Desert soils. Oecologia 156:871–81.

    Article  PubMed  Google Scholar 

  • McCalley CK, Sparks JP. 2009. Abiotic gas formation drives nitrogen loss from a desert ecosystem. Science 326:837–40.

    Article  CAS  PubMed  Google Scholar 

  • Mummey DL, Smith JL, Bolton H. 1994. Nitrous oxide flux from a shrub-steppe ecosystem: sources and regulation. Soil Biol Biochem 26:279–86.

    Article  CAS  Google Scholar 

  • Noy-Meir I. 1973. Desert ecosystems: environment and producers. Annu Rev Ecol Syst 4:25–52.

    Article  Google Scholar 

  • Paruelo JM, Sala OE. 1995. Water losses in the Patagonian steppe: a modeling approach. Ecology 76:510–20.

    Article  Google Scholar 

  • Paruelo JM, Aguiar MR, Golluscio RA. 1988. Soil water availability in the Patagonian arid steppe: gravel content effect. Arid Soil Res Rehabil 2:67–74.

    Google Scholar 

  • Paruelo JM, Beltrán A, Jobbágy EG, Sala OE, Golluscio RA. 1998. The climate of Patagonia: general patterns and controls on biotic process. Ecol Aust 8:85–101.

    Google Scholar 

  • Peterjohn WT. 1991. Denitrification: enzyme content and activity in desert soils. Soil Biol Biochem 23:845–55.

    Article  CAS  Google Scholar 

  • Peterjohn WT, Schlesinger WH. 1990. Nitrogen loss from deserts in the southwestern United States. Biogeochemistry 10:67–79.

    Article  Google Scholar 

  • Peterjohn WT, Schlesinger WH. 1991. Factors controlling denitrification in a Chihuahuan desert ecosystem. Soil Sci Soc Am J 55:1694–701.

    Google Scholar 

  • Raison RJ, Connell MJ, Khanna PK. 1987. Methodology for studying fluxes of soil mineral-N in situ. Soil Biol Biochem 19:521–30.

    Article  CAS  Google Scholar 

  • Rasevich E. 2008. Descripción climática de un sitio representativo del Distrito Occidental de la Estepa Patagónica Argentina. Buenos Aires: Faculty of Agronomy, University of Buenos Aires. p 68.

    Google Scholar 

  • Reeves TL, Smith MA. 1992. Time domain reflectometry for measuring soil water content in range surveys. J Range Manag 45:412–14.

    Article  Google Scholar 

  • Reynolds JF, Smith DMS, Lambin EFII, Mortimore M. BLT, Batterbury SPJ, Downing TE, Dowlatabadi H, Fernández RJ, Herrick JE, Huber-Sannwald E, Jiang H, Leemans R, Lynam T, Maestre FT, Ayarza M, Walker B. 2007. Global desertification: building a science for dryland development. Science 316:847–51.

    Article  CAS  PubMed  Google Scholar 

  • Ryden JC, Lund LJ, Focht DD. 1979. Direct measurement of denitrification loss from soils: I. laboratory evaluation of acetylene inhibition of nitrous oxide reduction. Soil Sci Soc Am J 43:104–18.

    CAS  Google Scholar 

  • Sala OE, Lauenroth WK. 1982. Small rainfall events: an ecological role in semiarid regions. Oecologia 53:301–4.

    Article  Google Scholar 

  • Sala OE, Parton WJ, Lauenroth WK, Joyce LA. 1988. Primary production of the central grassland region of the United States. Ecology 69:40–5.

    Article  Google Scholar 

  • Sala OE, Golluscio RA, Lauenroth WK, Soriano A. 1989. Resource partitioning between shrubs and grasses in the Patagonian steppe. Oecologia 81:501–5.

    Article  Google Scholar 

  • Sala OE, Lauenroth WK, Parton WJ. 1992. Long term soil water dynamics in the shortgrass steppe. Ecology 73:1175–81.

    Article  Google Scholar 

  • Schaeffer SM, Billings SA, Evans RD. 2003. Responses of soil nitrogen dynamics in a Mojave Desert ecosystem to manipulations in soil carbon and nitrogen availability. Oecologia 134:547–53.

    CAS  PubMed  Google Scholar 

  • Schlesinger WH. 1997. Biogeochemistry: an analysis of global change. San Diego: Academic Press.

    Google Scholar 

  • Schlesinger WH, Peterjohn WT. 1991. Processes controlling ammonia volatilization from Chihuahuan Desert soils. Soil Biol Biochem 23:637–42.

    Article  Google Scholar 

  • Schlesinger WH, Reynolds JF, Cunningham GL, Huenneke LF, Jarrell WM, Virginia RA, Whitford WG. 1990. Biological feedbacks in global desertification. Science 247:1043–8.

    Article  CAS  PubMed  Google Scholar 

  • Schlesinger WH, Raikes JA, Hartley AE, Cross AF. 1996. On the spatial pattern of soil nutrients in desert ecosystems. Ecology 77:364–74.

    Article  Google Scholar 

  • Schwinning S, Sala OE. 2004. Hierarchy of responses to resource pulses in arid and semi-arid ecosystems. Oecologia 141:211–20.

    PubMed  Google Scholar 

  • Sharpe RR, Harper LA. 1995. Soil, plant and atmospheric conditions as they relate to ammonia volatilization. Fert Res 42:149–58.

    Article  CAS  Google Scholar 

  • Soriano A, Sala OE, Perelman SB. 1994. Patch structure and dynamics in a Patagonian arid steppe. Vegetatio 111:127–35.

    Article  Google Scholar 

  • Tiedje JM, Sexstone AJ, Parkin TB, Revsbech NP, Shelton DR. 1984. Anaerobic process in soil. Plant Soil 26:198–214.

    Google Scholar 

  • Vitousek PM, Howarth R. 1991. Nitrogen limitation on land and in the sea: how can it occur? Biogeochemistry 13:87–115.

    Article  Google Scholar 

  • Waldvoord MA, Phillips FA, Stonestrom DA, Evans RD, Hartsough PC, Newman BD, Striegl RG. 2003. A reservoir of nitrate beneath desert soils. Science 302:1021–4.

    Article  Google Scholar 

  • West NE, Skujins JJ. 1977. The nitrogen-cycle in North American cold-winter semi-desert ecosystems. Oecol Planta 12:45–53.

    CAS  Google Scholar 

  • West NE, Skujins JJ. 1978. Summary, conclusions and suggestions for further research. In: West NE, Skujins JJ, Eds. Nitrogen in desert ecosystems. Stroudsburg (PA): Dowden, Hutchinson & Ross, Inc. p 244–53.

    Google Scholar 

  • Yahdjian L, Sala OE. 2008. Do litter decomposition and nitrogen mineralization show the same trend in the response to dry and wet years in the Patagonian steppe? J Arid Environ 75:687–95.

    Article  Google Scholar 

  • Yahdjian L, Sala OE, Austin AT. 2006. Differential controls of water input on litter decomposition and nitrogen dynamics in the Patagonian steppe. Ecosystems 9:128–41.

    Article  CAS  Google Scholar 

  • Yahdjian L, Gherardi L, Sala OE. 2010. Nitrogen limitation in arid-subhumid ecosystems: a meta-analysis of fertilization studies. Global Change Biol (Submitted).

  • Zaady E, Groffman PM, Shachak M. 1996. Litter as a regulator of N and C dynamics in macrophytic patches in Negev desert soils. Soil Biol Biochem 28:39–46.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was funded by the Agencia Nacional de Promoción Científica y Tecnológica (PICT 11298, and PICT 32548), Inter-American Institute for Global Change Research (CRN-012), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), and the Universidad de Buenos Aires (UBACyT G440). Institutional support was provided by the Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura (IFEVA), Brown University, and at the field site by the Instituto Nacional de Tecnología Agropecuaria (INTA) that gave permission to use facilities at Río Mayo Experimental Field Station, Chubut. We are grateful for comments on the experimental design from Amy Austin and Enrique Chaneton, and for the special assistance in the field of L. Gherardi and P. Araujo. Also, we would like to thank J. Arraiga, E. Díaz Falú, H. Dieguez, G. Durán, R. Gambarte, A. González Arzac, A. Grasso, N. Morandeira, E. Rasevich, M. Roldán, I. Romero, F. Spirito, J. Vrsalovic, G. Wies, and Felipe Cabrera for field assistance, and Paula Rojas and Veronica Feuring for laboratory assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laura Yahdjian.

Additional information

Author contributions

Conceived of or designed study: LY, OES; Performed research: LY; Analyzed data: LY; Contributed new methods or models: LY; Wrote the paper: LY, OES.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 183 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yahdjian, L., Sala, O.E. Size of Precipitation Pulses Controls Nitrogen Transformation and Losses in an Arid Patagonian Ecosystem. Ecosystems 13, 575–585 (2010). https://doi.org/10.1007/s10021-010-9341-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10021-010-9341-6

Keywords

Navigation