Skip to main content

Advertisement

Log in

Plant Community Composition as a Predictor of Regional Soil Carbon Storage in Alaskan Boreal Black Spruce Ecosystems

  • Published:
Ecosystems Aims and scope Submit manuscript

Abstract

The boreal forest is the largest terrestrial biome in North America and holds a large portion of the world’s reactive soil carbon. Therefore, understanding soil carbon accumulation on a landscape or regional scale across the boreal forest is useful for predicting future soil carbon storage. Here, we examined the relationship between floristic composition and ecosystem parameters, such as soil carbon pools, the carbon-to-nitrogen (C/N) ratio of live black spruce needles, and normalized basal area increment (NBAI) of trees in black spruce communities, the most widespread forest type in the boreal forest of Alaska. Variability in ecosystem properties among black spruce stands was as large as that which had previously been documented among all forest types in the central interior of Alaska; we found an eightfold range in NBAI and fivefold range in mineral soil carbon and nitrogen pools. Acidic black spruce communities had significantly more carbon in the organic soil horizon than did nonacidic black spruce communities, but did not differ in any other measured ecosystem parameter. We explained 48% of the variation in total soil carbon with a combination of plant community indices and abiotic and biotic factors. Plant community composition was at least as effective as any single environmental factor or stand characteristic in predicting soil C pools in Alaskan black spruce ecosystems. We conclude that among the community properties analyzed, the presence of key groups of species, overall species composition, and diversity of certain functional types, especially Sphagnum moss species, are important predictors of soil carbon sequestration in the black spruce forest type.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2 
Figure 3
Figure 4

Similar content being viewed by others

References

  • Atkins S, Bosak S, Heinz A, Seldon J, Matson N, St John A. 1998. Methods of ecosystem analysis: dendrochronology (AKA Tree rings). Totoket MT, North Brandford, CT. http://www.yale.edu/fes519b/totoket/treering/treerings_results.html

  • Beilman DW 2001. Plant community and diversity change due to localized permafrost dynamics in bogs of western Canada. Can J Bot 79:983–93.

    Article  Google Scholar 

  • Bisbee KE, Gower ST, Norman JM 2001. Environmental controls on ground cover species composition and productivity in a boreal black spruce forest. Oecologia 129:261–70.

    Article  Google Scholar 

  • Camill P, Clark JS 1998. Climate change disequilibrium of boreal permafrost peatlands caused by local processes. Am Nat 151(3):207–22.

    Article  CAS  PubMed  Google Scholar 

  • Chapin FS III 1983. Nitrogen and phosphorus nutrition and nutrient cycling by evergreen and deciduous understory shrubs in an Alaskan black spruce forest. Can J For Res 13:773–81.

    Article  CAS  Google Scholar 

  • Chapin FS III, Bret-Harte MS, Hobbie SE, Zhong H 1996. Plant functional types as predictors of transient responses of arctic vegetation to global change. J Veg Sci 7: 347–58.

    Article  Google Scholar 

  • Chapin FS III, Danell K 2001. Boreal forest. In: Chapin FS III, Sala OE, Huber-Sannwald E, Eds. Ecological studies 152. Biodiversity in a changing climate. New York (NY): Springer-Verlag. pp 101–20.

    Google Scholar 

  • Chapin FS III, Hollingsworth TN, Murray DF, Viereck LA, Walker MD 2006. Floristic diversity and vegetation distribution in Alaskan boreal forest. In: Chapin FS III, Oswood M, Van Cleve K, Viereck LA, Eds. Alaska’s changing boreal forest. New York (NY): Oxford University Press. pp 81–99.

    Google Scholar 

  • Devolder A. 1999. Fire and climate history of black spruce forests, Kenai National Wildlife Refuge, Alaska. MS thesis. Flagstaff, Arizona: Northern Arizona University

  • Dioumaeva I, Trumbore S, Schuur EAG, Goulden ML, Litvak M, Hirsch A 2003. Decomposition of peat from upland boreal forest: temperature dependence and sources of respired carbon. J Geophys Res 108:8222–34.

    Article  Google Scholar 

  • Goulden ML, Wofsy SC, Harden JW, Trumbore S, Crill PM, Gower ST, Fries T 1998. Sensitivity of boreal forest carbon balance to soil thaw. Science 279:214–7.

    Article  PubMed  CAS  Google Scholar 

  • Harden JW, O’Neill KP, Trumbore SE, Veldhuis H, Stocks BF 1997. Accumulation and turnover of carbon in soils of the BOREAS NSA: two soil contribution to annual net C flux in a maturing spruce-moss forest (OBS NSA). J Geophys Res 102:805–16.

    Article  Google Scholar 

  • Hinzman LD, Viereck LA, Adams PC, Romanovsky VE, Yoshikawa K 2006. Climate and permafrost dynamics of the Alaskan boreal forest. In: Chapin FS III, Oswood M, Van Cleve K, Viereck LA, Eds. Alaska’s changing boreal forest. New York (NY): Oxford University Press. pp 39–61.

    Google Scholar 

  • Hollingsworth TN, Walker MD, Chapin FS III, Parsons A 2006. Scale-dependent environmental controls over species composition in Alaskan black spruce communities. Can J For Res 36:1781–96.

    Article  Google Scholar 

  • Hooper DU, Vitousek PM 1997. The effects of plant composition and diversity on ecosystem processes. Science 277:1302–5.

    Article  CAS  Google Scholar 

  • Kane ES, Valentine DW, Schuur EAG, Dutta K 2005. Soil carbon stabilization along climate and stand productivity gradient in black spruce forests of interior Alaska. Can J For Res 35:2118–29.

    Article  CAS  Google Scholar 

  • Kittel TGF, Steffen WL, Chapin FS III 2000. Global and regional modeling of arctic–boreal vegetation distribution and its sensitivity to altered forcing. Glob Chang Biol 6(Suppl 1):1–18.

    Article  Google Scholar 

  • Kuhry P, Nicholson BJ, Gignac LD, Vitt DH, Bayley SE 1993. Development of Sphagnum-dominated peatlands in boreal continental Canada. Can J Bot 71:10–22.

    Article  Google Scholar 

  • Liski J, Westman CJ 1997. Carbon storage in forest soil in Finland 1. Effect of thermoclimate. Biogeochemistry 36:239–60.

    Article  Google Scholar 

  • Litton CM, Ryan MG, Knight DH 2004. Effects of tree density and stand age on carbon allocation patterns in postfire lodgepole pine. Ecol Appl 14:460–75.

    Article  Google Scholar 

  • Mack MC, Schuur EAG, Bret-Harte MS, Shaver GR, Chapin FS III 2004. Carbon storage in arctic tundra reduced by long-term nutrient fertilization. Nature 431:440–3.

    Article  PubMed  CAS  Google Scholar 

  • Mack MC, Treseder KK, Manies KL, Harden JW, Schuur EAG, Vogel JG, Randerson JT, Chapin FS III. 2008. Recovery of aboveground plant biomass and productivity after fire in mesic and dry black spruce forests of Interior Alaska. Ecosystems. doi: 10.1007/s10021-007-9117-9

  • McCune B, Mefford MJ. 1999. PC-ORD. Multivariate analysis of ecological data, version 4.25. Gleneden Beach (OR): MjM Software Design. p 237

  • McGuire AD, Wirth C, Apps MJ, Beringer J, Clein J, Epstein H, Kicklighter DW, Bhatti JS, Chapin FS III, de Groot B, Efremov D, Euguster W, Fukuda M, Gower ST, Hinzman L, Huntley B, Jia GJ, Kasischke E, Melillo J, Romanovsky VE, Shvidenko A, Vaganov E, Walker DA 2002. Environmental variation, vegetation distribution, carbon dynamics and water/energy exchange at high latitudes. J Veg Sci 13:301–14.

    Article  Google Scholar 

  • Mitchell RJ 1993. Path analysis: pollination. In: Scheiner SM, Gurevitch J, Eds. Design and analysis of ecological experiments. New York (NY): Chapman & Hall. pp 211–31.

    Google Scholar 

  • Mueller-Dombois D, Ellenberg H 1974. Aims and methods of vegetation ecology. New York (NY): John Wiley & Sons. p 547.

    Google Scholar 

  • O’Connell KEB, Gower ST, Norman JM 2003b. Net ecosystem production of two contrasting boreal black spruce forest communities. Ecosystems 6:248–60.

    Article  CAS  Google Scholar 

  • Randerson JT, Liu H, Flanner M, Chambers SD, Jin Y, Hess PG, Pfister G, Mack MC, Treseder KK, Welp L, Chapin FS III, Harden JW, Goulden ML, Lyons E, Neff JC, Schuur EAG, Zender C 2006. The impact of boreal forest fire on climate warming. Science 314:1130–2.

    Article  PubMed  CAS  Google Scholar 

  • Ruess RW, Hendrick RL, Burton AJ, Pregitzer KS, Sveinbjornsson B, Allen MF, Maurer GE 2003. Coupling fine root dynamics with ecosystem carbon cycling in black spruce forests of interior Alaska. Ecol Monogr 73:643–62.

    Article  Google Scholar 

  • Swetnam T, Thompson MA, Sutherland EK. 1985. Using dendrochronology to measure the growth of defoliated trees. Washington, DC: USDA Forest Service Agricultural Handbook no. 639

  • Turetsky MR, Wieder RK, Williams CJ, Vitt DH 2000. Organic matter accumulation, peat chemistry, and permafrost melting in peatlands of boreal Alberta. Ecoscience 7(3):379–92.

    Google Scholar 

  • Van Cleve K, Dyrness CT, Viereck LA, Fox JF, Chapin FS III, Oechel WC 1983a. Taiga ecosystems in interior Alaska. Bioscience 33:39–44.

    Article  Google Scholar 

  • Van Cleve K, Oliver L, Schlentner R 1983b. Productivity and nutrient cycling in the taiga forest ecosystem. Can J For Res 13:747–66.

    Article  Google Scholar 

  • Van Cleve K, Oechel WC, Hom JL. 1990. Response of black spruce ecosystems to soil temperature modification in interior Alaska. Can J For Res 20:1530–5.

    Article  Google Scholar 

  • Viereck LA 1973. Wildfire in the taiga of Alaska. J Quatern Res 3:465–95.

    Article  Google Scholar 

  • Viereck LA 1983. Vegetation, soils, and forest productivity in selected forest types in interior Alaska. Can J For Res 13: 703–20.

    Article  Google Scholar 

  • Viereck LA, Johnston WF 1990. Picea mariana (Mill.) B.S.P. black spruce. In: Burns RM, Honkala BH, Eds. Silvics of North America. Washington, DC: Forest Service, US Department of Agriculture. pp 227–37.

    Google Scholar 

  • Vitt DH, Halsey LA, Zoltai SC 1994. The bog landforms of continental western Canada in relation to climate and permafrost patterns. Arct Alp Res 26:1–13.

    Article  Google Scholar 

  • Vitt DH, Halsey LA, Zoltai SC 2000. The changing landscape of Canada’s western boreal forest: the current dynamics of permafrost. Can J For Res 30:283–87.

    Article  Google Scholar 

  • Vogel J, Valentine D, Ruess RW 2005. Soil and root respiration in mature Alaskan black spruce that vary in soil organic matter decomposition rates. Can J For Res 35:161–71.

    Article  CAS  Google Scholar 

  • Walker DA, Everett KR 1991. Loess ecosystems of northern Alaska: regional gradient and toposequence at Prudhoe Bay. Ecol Monogr 61:437–64.

    Article  Google Scholar 

  • Walker MD, Walker DA, Auerbach NA 1994. Plant communities of a tussock tundra landscape in the Brooks Range foothills, Alaska. J Veg Sci 5: 843–66.

    Article  Google Scholar 

  • Whittaker RJ 1975. Communities and ecosystems. New York (NY): The Macmillan Company. p 158.

    Google Scholar 

Download references

Acknowledgments

We thank A. Parsons, J. Hollingsworth, J. Arseneau, L. Rose, and T. Buxbaum for field and laboratory assistance, and M. Zhurbenko, O. Afonina, C. Parker and A. Batten for help in verification of specimens. Roger Ruess, David Valentine, David Verbyla, Les Viereck, Evan Kane, Jason Vogel, Merritt Turetsky, and two anonymous reviewers provided comments on previous drafts. This work was funded through grants to the Bonanza Creek Long-Term Ecological Research (LTER) site (NSF grant numbers 9810217 and 0080609), USDA PNW Research Station (joint venture PNW01-JV11261952-231), a student research grant from the Center of Global Change and Arctic System Research at the University of Alaska Fairbanks, the UAF Austin Cooley Talent grant, and a NASA New Investigator grant to EAGS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. N. Hollingsworth.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hollingsworth, T.N., Schuur, E.A.G., Chapin, F.S. et al. Plant Community Composition as a Predictor of Regional Soil Carbon Storage in Alaskan Boreal Black Spruce Ecosystems. Ecosystems 11, 629–642 (2008). https://doi.org/10.1007/s10021-008-9147-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10021-008-9147-y

Keywords

Navigation