Skip to main content
Log in

Spatial Ecological Hierarchies: Coexistence on Heterogeneous Landscapes via Scale Niche Diversification

  • Published:
Ecosystems Aims and scope Submit manuscript

Abstract

Spatially heterogeneous environments are generally characterized by nested landscape patterns with resource aggregations on several scales. Empirical studies indicate that such nested landscape patterns impose selection constraints on the perceptive scales of animals, but the underlying selection mechanisms are unclear. We investigated the selection dynamics of perceptive scale within a spatial resource utilization model, where the environment is characterized by its resource distribution and species differ in their perceptive scales and resource preemption capabilities. Using three model landscapes with various resource distributions, we found that the optimal perceptive scale is determined by scale-specific attributes of the landscape pattern and that the number of coexisting species increases with the number of characteristic scales. Based on the results of this model, we argue that resource aggregations on different scales act as distinct resources and that animal species of particular perceptive scales are superior in utilizing resource aggregations of comparable spatial extent. Due to the allometric relationship between body size and perceptive scale, such fitness difference might result in discontinuous body mass distributions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1.
Figure 2.
Figure 3.

Similar content being viewed by others

References

  • Alien CR, Forys EA, Holling CS. 1999. Body mass patterns predict invasions and extinctions in transforming landscapes. Ecosystems 2:114–21

    Article  Google Scholar 

  • Alien CR, Saunders DA. 2002. Variability between scales: predictors of nomadism in birds of an Australian mediterranean-climate ecosystem. Ecosystems 5:348–59

    Article  Google Scholar 

  • Alien TFH, Hoekstra TW. 1992. Toward a unified ecology. New York: Columbia University Press

    Google Scholar 

  • Carlile DW, Skalski JR, Barker JE, Thomas JM, Cullinan VI. 1989. Determination of ecological scale. Landscape Ecol 2:203–13.

    Article  Google Scholar 

  • Carpenter SR, Kitchell JF, 1993, The trophic cascade in lakes. Cambridge (UK): Cambridge University Press

    Google Scholar 

  • Clark WC. 1985. Scales of climate impacts. Clim Change 7:5–27

    Article  Google Scholar 

  • Cumming GS, Havlicek TD. 2002. Evolution, ecology, and multimodal distributions of body size. Ecosystems 5:705–11

    Article  Google Scholar 

  • Dale MRT. 1999. Spatial pattern analysis in plant eology. Cambridge (UK): Cambridge University Press

    Google Scholar 

  • Dale MRT, MacIsaac DA. 1989. New methods for the analysis of spatial pattern in vegetation. J Ecol 77:78–91

    Article  Google Scholar 

  • Delcourt HR, Delcourt PA. 1988. Quaternary landscape ecology: relevant scales in space and time. Landscape Ecol 2:23–44

    Article  Google Scholar 

  • Dickman CR. 1988. Body size, prey size, and community structure in insectivorous mammals. Ecology 69:569–80

    Article  Google Scholar 

  • Forman RTT. 1995. Land mosaics: the ecology of landscapes and regions. Cambridge (UK): Cambridge University Press

    Google Scholar 

  • Franklin JF, Forman TT. 1987. Creating landscape patterns by forest cutting: ecological consequences and principles. Landscape Ecol 1:5–18

    Article  Google Scholar 

  • Harestad AS, Bunnell FL. 1979. Home range and body weight—a reevaluation. Ecology 60:389–402

    Article  Google Scholar 

  • Haskell JP, Ritchie ME, Olff H. 2002. Fractal geometry predicts varying body size scaling relationships for mammal and bird home ranges. Nature 418:527–30

    Article  PubMed  CAS  Google Scholar 

  • Hildén O. 1965. Habitat selection in birds. Ann Zool Fenn 2:53–75

    Google Scholar 

  • Holling CS. 1992. Cross-scale morphology, geometry and dynamics of ecosystems. Ecol Monogr 62:447–502

    Article  Google Scholar 

  • Kolasa J. 1989. Ecological systems in hierarchical perspective: breaks in the community structure and other consequences. Ecology 70:36–47

    Article  Google Scholar 

  • Kotliar NB, Wiens JA. 1990. Multiple scales of patchiness and patch structure: a hierarchical framework for the study of heterogeneity. Oikos 59:253–60

    Google Scholar 

  • Krummel JR, Gardner RH, Sugihara G, O’Neill RV, Coleman PR. 1987. Landscape patterns in a disturbed environment. Oikos 48:321–34

    Google Scholar 

  • Lambert WD, Holling CS. 1998. Causes of ecosystem transformation at the end of the Pleistocene: evidence from mammal body-mass distributions. Ecosystems 1:157–75

    Article  Google Scholar 

  • Levin S. 1992. The problems of pattern and scale in ecology. Ecology 73:1943–67

    Article  Google Scholar 

  • Malamud BD, Moreig G, Turcotte DL. 1998. Forest fires: an example of self-organized critical behavior. Science 281:1840–2

    Article  PubMed  CAS  Google Scholar 

  • McNab BK. 1963. Bioenergetics and the determination of home range size. Am Nat 97:133–40

    Article  Google Scholar 

  • McNamee PJ, McLeod PM, Holling CS. 1981. The structure and behavior of defoliating insect–forest systems. Res Pop Ecol 23:280–98

    Article  Google Scholar 

  • Menge BA, Olson AM. 1990. Role of scale and environmental factors in regulation of community structure. Trends Ecol Evol 5:52–7

    Article  Google Scholar 

  • Moloney KA, Levin SA, Chiariello NR, Buttel L. 1992. Pattern and scale in a serpentine grassland. Theoret Pop Biol 41:257–76

    Article  Google Scholar 

  • Morris DW. 1987. Ecological scale and habitat use. Ecology 68:362–9

    Article  Google Scholar 

  • Morton SR. 1990. The impact of European settlement on the vertebrate animals of arid Australia: a conceptual model. Proc Ecol Soc Aust 16:201–13

    Google Scholar 

  • O’Neill RV, DeAngelis DL, Waide JB, Allen TFH. 1986. A hierachical concept of ecosystems. Princeton (NJ): Princeton University Press

    Google Scholar 

  • Persson L. 1985. Asymmetric competition: are larger animals competitively superior? Am Nat 126:261–6

    Article  Google Scholar 

  • Peterson G, Allen CR, Holling CS. 1998. Ecological resilience, biodiversity, and scale. Ecosystems 1:6–18

    Article  Google Scholar 

  • Pyke G. 1981. Optimal foraging in hummingbirds: rules of movements between inflorescences. Anim Behav 29:889–96

    Article  Google Scholar 

  • Raffaelli D, Hall S, Emes C, Manly B. 2000. Constraints on body size distributions: an experimental approach using a small-scale system. Oecologia 122:389–98

    Article  Google Scholar 

  • Reiss M. 1988. Scaling of home range size: body size, metabolic needs and ecology. Trends Ecol Evol 3:85–8

    Article  Google Scholar 

  • Restrepo C, Renjifo LM, Marples P. 1997. Frugivorous birds in fragmented neotropical montane forests: landscape pattern and body mass distribution. In: Laurance WF, Bierregaard RO, editors. Tropical forest remnants: ecology, management and conservation of fragmented communities. Chicago: University of Chicago Press. p 171–89

    Google Scholar 

  • Ritchie ME, Olff H. 1999. Spatial scaling laws yield a synthetic theory of biodiversity. Nature 400:557–60

    Article  PubMed  CAS  Google Scholar 

  • Roland J, Taylor PD. 1997. Insect parasitoid species respond to forest structure at different spatial scales. Nature 386:710–13

    Article  CAS  Google Scholar 

  • Romme WH. 1982. Fire and landscape diversity in subalpine forests of Yellowstone National Park. Ecol Monogr 52:199–221

    Article  Google Scholar 

  • Sendzimir J, Allen CR, Gunderson L, Stow C. 2003. Implications of body mass patterns: linking ecological structure and process to wildlife conservation and managment. In: Bissonette J, Storch I, editors. Landscape ecology and resource management: linking theory with practice. Washington, (DC): Island Press. p 125–52

    Google Scholar 

  • Senft RL, Coughenour MB, Bailey DW, Rittenhouse LR, Saga OE, Swift DM. 1987. Large herbivore foraging and ecological hierarchies. BioScience 37:789–99

    Article  Google Scholar 

  • Siemann E, Brown JH. 1999. Gaps in mammalian body size distributions reexamined. Ecology 80: 2788–92

    Article  Google Scholar 

  • Smith TB, Wayne RK, Girman DJ, Bruford MW. 1997. A role for ecotones in generating rainforest biodiversity. Science 276:1855–7

    Article  CAS  Google Scholar 

  • Thompson P, Fox BJ. 1993. Asymmetric competition in Australian heathland rodents: a reciprocal removal experiment demonstrating the influence of size-class structure. Oikos 67:264–78

    Google Scholar 

  • Vezina AF. 1985. Empirical relationships between predator and prey size among terrestrial vertebrate predators. Oecologia 67:555–65

    Article  Google Scholar 

  • Webb SD. 1984. Ten million years of mammal extinctions in North America. In: Martin PS, Klein RG, editors. Quaternary extinctions: a prehistoric revolution. Tucson (AZ): University of Arizona Press. p 189–210

    Google Scholar 

  • Wiens JA. 1989. Spatial scaling in ecology. Funct Ecol 3:385–97

    Article  Google Scholar 

  • Witting L. 1995. The body mass allometries as evolutionarily determined by the foraging of mobile organisms. J Theoret Biol 177:129–37

    Article  Google Scholar 

  • Wu J, Loucks OL. 1995. From balance of nature to hierarchical patch dynamics: a paradigm shift in ecology. Q Rev Biol 70:439–66

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Hungarian Research Fund OTKA-T049689. Useful discussions with György Szabó and Krisztián Mágori are acknowledged. We thank Mark D. Eyre for his valuable comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Péter Szabó.

Appendix

Appendix

Table 1 Appendix. Model Landscape Resource Distributions

Rights and permissions

Reprints and permissions

About this article

Cite this article

Szabó, P., Meszéna, G. Spatial Ecological Hierarchies: Coexistence on Heterogeneous Landscapes via Scale Niche Diversification. Ecosystems 9, 1009–1016 (2006). https://doi.org/10.1007/s10021-005-0101-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10021-005-0101-y

Keywords

Navigation