Skip to main content
Log in

Combustion synthesis of CoCrMo orthopedic implant alloys: microstructure and properties

  • Original Article
  • Published:
Materials Research Innovations

Abstract

Because of their excellent properties, such as corrosion resistance, fatigue strength and biocompatibility, cobalt-based alloys are widely used in total hip and knee replacements, dental devices and support structures for heart valves. In this work, CoCrMo alloys were synthesized using a novel method based on combustion synthesis (CS), an advanced technique to produce a wide variety of materials including alloys and near-net shape articles. This method possesses several advantages over conventional processes, such as low energy requirements, short processing times and simple equipment. The evaluated material properties included density and yield measurements, composition and microstructure analysis, hardness, friction and tensile tests. It was shown that microstructure of CS-material is finer and more uniform as compared to the conventional standard. It was also found that among various additives, Cr3C2 is the most effective one for increasing material hardness. In addition, synthesized CoCrMo alloys exhibited good friction and mechanical properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

References

  1. Martinelli KA, Lemaitre DT, Lee TJ (2001, November 21) Orthopedic Industry: Update and Company Models. Merrill Lynch, New York, p 1

  2. Saleh KJ (2001) Clinical Orthopedic and Related Research 392:153

    Google Scholar 

  3. Cushner F, Friedman RJ (1988) South Med J 81:1379

    CAS  PubMed  Google Scholar 

  4. Keller JC, Lautenschlager EP (1986) Metals and alloys. In: von Recuum AF (ed) Handbook of biomaterials evaluation. Macmillan, New York, p 3

  5. Granchi D, Ciapetti G, Stea S, Savarino L, Filippini F, Sudanese A, Zinghi G, Montanaro L (1999) Biomater 20:1079

    Article  CAS  Google Scholar 

  6. Muster D, Hage-Ali M, Rie KT, Stucky T, Cornet A, Mainard D (2000) MRS Bull 25:25

    CAS  Google Scholar 

  7. Asphahani AI (1988) Corrosion of cobalt-base alloy. In: ASM metal handbook, 9th edition. ASM International, Metals Park, Ohio, 13:658

  8. Shetty RH, Ottersberg WH (1995) Metals in orthopaedic surgery. In: Wise DL (ed) Encyclopedic handbook of biomaterials and bioengineering, Part B; Applications. Marcel Dekker, New York, p 509

  9. Gómez M, Mancha H, Salinas A, Rodríguez JL, Escobedo J, Castro M, Méndez M (1997) J Biomed Mater Res 34:157

    Article  PubMed  Google Scholar 

  10. Munir ZA, Anselmi-Tamburini U (1989) Mater Sci Rep 3:277

    Article  CAS  Google Scholar 

  11. Varma A, Mukasyan AS (1998) Combustion synthesis of advanced materials. In: Powder metal technologies and applications, ASM Handbook. ASM International, Materials Park, Ohio, p 523

  12. Merzhanov AG (1990) Self-propagating high-temperature synthesis: twenty years of search and findings. In: Munir ZA, Holt JB (eds) Combustion and plasma synthesis of high-temperature materials. VCH, New York, p 1

  13. Yukhvid VI (1992) Pure & Appl Chem 64:977

    Google Scholar 

  14. Odawara O (1996) Key Eng Mater 122:463

    Google Scholar 

  15. Seshadri R (2000) Metals Mater Proc 12:233

    CAS  Google Scholar 

  16. Ohmi T, Murota Y, Kudoh M (2001) Mater Trans 42:298

    CAS  Google Scholar 

  17. Yukhvid VI, Sanin VN, Nersesyan MD, Luss D (2002) Int J SHS 11:65

    CAS  Google Scholar 

  18. Shiryaev A (1995) Int J SHS 4:351

    CAS  Google Scholar 

  19. Varma A, Li B, Mukasyan A (2002) Adv Eng Mater 4:482

    Article  CAS  Google Scholar 

  20. Lau C, Mukasyan AS, Varma A (2002) Proc Combust Inst 29:1101

    Google Scholar 

  21. Odawara O (1990) J Am Ceram Soc 73:629

    CAS  Google Scholar 

  22. Halverson DC, Ewald KH, Munir ZA (1995) J Mater Sci 30:3697

    CAS  Google Scholar 

  23. Tandon R (1999) Net-shaping of Co-Cr-Mo (F-75) via metal injection molding. In: Disegi JA, Kennedy RL, Pilliar R (eds) Cobalt-base alloys for biomedical applications.,ASTM STP 1365.: ASTM, West Conshohocken, PA, p 3

  24. Mancha H, Gomez M, Castro M, Mendez M, Juarez J (1996) J Mater Syn Process 4:217

    CAS  Google Scholar 

  25. Huang P, Lopez HF (1999) Adv Sci Technol 28:111

    CAS  Google Scholar 

  26. Que L, Timmie LD, Parks NL (2000) J Biomed Mater Res 53:111

    Article  CAS  PubMed  Google Scholar 

  27. Saikko V, Calonius O, Keranen (2001) J Biomed Mater Res 57:506

    Article  CAS  PubMed  Google Scholar 

  28. Jinno T, Goldberg VM, Davy D, Stevenson S (1998) J Biomed Mater Res 42:20

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The financial support by the 21st Century Research & Technology Fund, State of Indiana, is gratefully acknowledged. We also thank Dr. Ravi Shetty, Zimmer, Inc., Warsaw, IN for his interest in this work and assistance with materials characterization.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arvind Varma.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, B., Mukasyan, A. & Varma, A. Combustion synthesis of CoCrMo orthopedic implant alloys: microstructure and properties. Mat Res Innovat 7, 245–252 (2003). https://doi.org/10.1007/s10019-003-0260-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10019-003-0260-4

Keywords

Navigation