Skip to main content
Log in

Oral Administration of Diferuloylmethane (Curcumin) Suppresses Proinflammatory Cytokines and Destructive Connective Tissue Remodeling in Experimental Abdominal Aortic Aneurysms

  • Basic Science Research
  • Published:
Annals of Vascular Surgery

Abstract

Chronic transmural inflammation and proteolytic destruction of medial elastin are key mechanisms in the development of abdominal aortic aneurysms (AAAs). Diferuloylmethane (curcumin) is a major component of the food additive tumeric, which has been shown to have anti-inflammatory properties. To determine if ingestion of curcumin influences aneurysmal degeneration, C57Bl/6 mice underwent transient elastase perfusion of the abdominal aorta to induce the development of AAAs, followed by daily oral gavage with 100 mg/kg curcumin (n = 36) or water alone (n = 31). By 14 days, mice in the control group developed a mean increase in aortic diameter of 162.8 ± 4.6% along with a dense mononuclear inflammation and destruction of medial elastin. By comparison, the mean increase in aortic diameter in the curcumin-treated group was only 133.2 ± 5.2% (p < 0.0001). Although aortic wall inflammation was similar between the groups, the structural integrity of medial elastin was significantly greater in curcumin-treated mice. Curcumin-treated mice also exhibited relative decreases in aortic tissue activator protein-1 and nuclear factor κB DNA binding activities and significantly lower aortic tissue concentrations of interleukin-1β (IL-1β), IL-6, monocyte chemoattractant protein-1, and matrix metalloproteinase-9 (all p < 0.05). These data demonstrate for the first time that oral administration of curcumin can suppress the development of experimental AAAs, along with structural preservation of medial elastin fibers and reduced aortic wall expression of several cytokines, chemokines, and proteinases known to mediate aneurysmal degeneration. The possibility that dietary ingestion of curcumin may have a beneficial effect in degenerative aortic aneurysms warrants further consideration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

References

  1. Thompson RW, Geraghty PJ, Lee JK. Abdominal aortic aneurysms: basic mechanisms and clinical implications. Curr Probl Surg 2002;39:93–232

    Article  Google Scholar 

  2. Daugherty A, Cassis LA. Mechanisms of abdominal aortic aneurysm formation. Curr Atheroscler Rep 2002;4:222–227

    Article  PubMed  Google Scholar 

  3. Ailawadi G, Eliason JL, Upchurch GR Jr. Current concepts in the pathogenesis of abdominal aortic aneurysm. J Vasc Surg 2003;38:584–588

    Article  PubMed  Google Scholar 

  4. Ocana E, Bohorquez JC, Perez-Requena J, Brieva JA, Rodriguez C. Characterisation of T and B lymphocytes infiltrating abdominal aortic aneurysms. Atherosclerosis 2003;170:39–48

    Article  PubMed  CAS  Google Scholar 

  5. Koch A, Kunkel S, Pearce W, et al. Enhanced production of the chemotactic cytokines interleukin-8 and monocyte chemoattractant protein-1 in human abdominal aortic aneurysms. Am J Pathol 1993;142:1423–1431

    PubMed  CAS  Google Scholar 

  6. Pearce WH, Sweis I, Yao JS, McCarthy WJ, Koch AE. Interleukin-1 beta and tumor necrosis factor-alpha release in normal and diseased human infrarenal aortas. J Vasc Surg 1992;16:784–789

    Article  PubMed  CAS  Google Scholar 

  7. Holmes DR, Wester W, Thompson RW, Reilly JM. Prostaglandin E2 synthesis and cyclooxygenase expression in abdominal aortic aneurysms. J Vasc Surg 1997;25:810–815

    Article  PubMed  CAS  Google Scholar 

  8. Zhao L, Moos MP, Grabner R, et al. The 5-lipoxygenase pathway promotes pathogenesis of hyperlipidemia-dependent aortic aneurysm. Nat Med 2004;10:966–973

    Article  PubMed  CAS  Google Scholar 

  9. Miller FJ Jr, Sharp WJ, Fang X, Oberley LW, Oberley TD, Weintraub NL. Oxidative stress in human abdominal aortic aneurysms: a potential mediator of aneurysmal remodeling. Arterioscler Thromb Vasc Biol 2002;22:560–565

    Article  PubMed  CAS  Google Scholar 

  10. Kadoglou NP, Liapis CD. Matrix metalloproteinases: contribution to pathogenesis, diagnosis, surveillance and treatment of abdominal aortic aneurysms. Curr Med Res Opin 2004;20:419–432

    Article  PubMed  CAS  Google Scholar 

  11. Annabi B, Shedid D, Ghosn P, et al. Differential regulation of matrix metalloproteinase activities in abdominal aortic aneurysms. J Vasc Surg 2002;35:539–546

    Article  PubMed  Google Scholar 

  12. Thompson RW, Holmes DR, Mertens RA, et al. Production and localization of 92-kilodalton gelatinase in abdominal aortic aneurysms: an elastolytic metalloproteinase expressed by aneurysm-infiltrating macrophages. J Clin Invest 1995;96:318–326

    Article  PubMed  CAS  Google Scholar 

  13. Petrinec D, Liao S, Holmes DR, Reilly JM, Parks WC, Thompson RW. Doxycycline inhibition of aneurysmal degeneration in an elastase-induced rat model of abdominal aortic aneurysm: preservation of aortic elastin associated with suppressed production of 92 kD gelatinase. J Vasc Surg 1996;23:336–346

    Article  PubMed  CAS  Google Scholar 

  14. Bigatel DA, Elmore JR, Carey DJ, Cizmeci-Smith G, Franklin DP, Youkey JR. The matrix metalloproteinase inhibitor BB-94 limits expansion of experimental abdominal aortic aneurysms. J Vasc Surg 1999;29:130–138

    Article  PubMed  CAS  Google Scholar 

  15. Prall AK, Longo GM, Mayhan WG, et al. Doxycycline in patients with abdominal aortic aneurysms and in mice: comparison of serum levels and effect on aneurysm growth in mice. J Vasc Surg 2002;35:923–929

    Article  PubMed  Google Scholar 

  16. Manning MW, Cassis LA, Daugherty A. Differential effects of doxycycline, a broad-spectrum matrix metalloproteinase inhibitor, on angiotensin II-induced atherosclerosis and abdominal aortic aneurysms. Arterioscler Thromb Vasc Biol 2003;23:483–488

    Article  PubMed  CAS  Google Scholar 

  17. Allaire E, Forough R, Clowes M, Starcher B, Clowes AW. Local overexpression of TIMP-1 prevents aortic aneurysm degeneration and rupture in a rat model. J Clin Invest 1998;102:1413–1420

    Article  PubMed  CAS  Google Scholar 

  18. Pyo R, Lee JK, Shipley JM, et al. Targeted gene disruption of matrix metalloproteinase-9 (gelatinase B) suppresses development of experimental abdominal aortic aneurysms. J Clin Invest 2000;105:1641–1649

    Article  PubMed  CAS  Google Scholar 

  19. Longo GM, Xiong W, Greiner TC, Zhao Y, Fiotti N, Baxter BT. Matrix metalloproteinases 2 and 9 work in concert to produce aortic aneurysms. J Clin Invest 2002;110:625–632

    Article  PubMed  CAS  Google Scholar 

  20. Shah BH, Nawaz Z, Pertani SA, et al. Inhibitory effect of curcumin, a food spice from turmeric, on platelet-activating factor- and arachidonic acid-mediated platelet aggregation through inhibition of thromboxane formation and Ca2+ signaling. Biochem Pharmacol 1999;58:1167–1172

    Article  PubMed  CAS  Google Scholar 

  21. Chainani-Wu N. Safety and anti-inflammatory activity of curcumin: a component of tumeric (Curcuma longa). J Altern Complement Med 2003;9:161–168

    Article  PubMed  Google Scholar 

  22. Aggarwal BB, Kumar A, Bharti AC. Anticancer potential of curcumin: preclinical and clinical studies. Anticancer Res 2003;23:363–398

    PubMed  CAS  Google Scholar 

  23. Sharma RA, McLelland HR, Hill KA, et al. Pharmacodynamic and pharmacokinetic study of oral Curcuma extract in patients with colorectal cancer. Clin Cancer Res 2001;7:1894–1900

    PubMed  CAS  Google Scholar 

  24. Rao CV, Rivenson A, Simi B, Reddy BS. Chemoprevention of colon carcinogenesis by dietary curcumin, a naturally occurring plant phenolic compound. Cancer Res 1995;55:259–266

    PubMed  CAS  Google Scholar 

  25. Kawamori T, Lubet R, Steele VE, et al. Chemopreventive effect of curcumin, a naturally occurring anti-inflammatory agent, during the promotion/progression stages of colon cancer. Cancer Res 1999;59:597–601

    PubMed  CAS  Google Scholar 

  26. Cheng AL, Hsu CH, Lin JK, et al. Phase I clinical trial of curcumin, a chemopreventive agent, in patients with high-risk or pre-malignant lesions. Anticancer Res 2001;21:2895–2900

    PubMed  CAS  Google Scholar 

  27. Chuang SE, Kuo ML, Hsu CH, et al. Curcumin-containing diet inhibits diethylnitrosamine-induced murine hepatocarcinogenesis. Carcinogenesis 2000;21:331–335

    Article  PubMed  CAS  Google Scholar 

  28. Ammon HP, Wahl MA. Pharmacology of Curcuma longa. Planta Med 1991;57:1–7

    Article  PubMed  CAS  Google Scholar 

  29. Ramsewak RS, DeWitt DL, Nair MG. Cytotoxicity, antioxidant and anti-inflammatory activities of curcumins I-III from Curcuma longa. Phytomedicine 2000;7:303–308

    PubMed  CAS  Google Scholar 

  30. Punithavathi D, Venkatesan N, Babu M. Curcumin inhibition of bleomycin-induced pulmonary fibrosis in rats. Br J Pharmacol 2000;131:169–172

    Article  PubMed  CAS  Google Scholar 

  31. Punithavathi D, Venkatesan N, Babu M. Protective effects of curcumin against amiodarone-induced pulmonary fibrosis in rats. Br J Pharmacol 2003;139:1342–1350

    Article  PubMed  CAS  Google Scholar 

  32. Gaedeke J, Noble NA, Border WA. Curcumin blocks multiple sites of the TGF-beta signaling cascade in renal cells. Kidney Int 2004;66:112–120

    Article  PubMed  CAS  Google Scholar 

  33. Arbiser JL, Klauber N, Rohan R, et al. Curcumin is an in vivo inhibitor of angiogenesis. Mol Med 1998;4:376–383

    PubMed  CAS  Google Scholar 

  34. Jagetia GC, Rajanikant GK. Role of curcumin, a naturally occurring phenolic compound of turmeric in accelerating the repair of excision wound, in mice whole-body exposed to various doses of gamma-radiation. J Surg Res 2004;120:127–138

    Article  PubMed  CAS  Google Scholar 

  35. Leclercq IA, Farrell GC, Sempoux C, dela Pena A, Horsmans Y. Curcumin inhibits NF-kappaB activation and reduces the severity of experimental steatohepatitis in mice. J Hepatol 2004;41:926–934

    Article  PubMed  CAS  Google Scholar 

  36. Eybl V, Kotyzova D, Bludovska M. The effect of curcumin on cadmium-induced oxidative damage and trace elements level in the liver of rats and mice. Toxicol Lett 2004;151:79–85

    Article  PubMed  CAS  Google Scholar 

  37. Egan ME, Pearson M, Weiner SA, et al. Curcumin, a major constituent of turmeric, corrects cystic fibrosis defects. Science 2004;304:600–602

    Article  PubMed  CAS  Google Scholar 

  38. Ohashi Y, Tsuchiya Y, Koizumi K, Sakurai H, Saiki I. Prevention of intrahepatic metastasis by curcumin in an orthotopic implantation model. Oncology 2003;65:250–258

    Article  PubMed  Google Scholar 

  39. Perkins S, Verschoyle RD, Hill K, et al. Chemopreventive efficacy and pharmacokinetics of curcumin in the min/+ mouse, a model of familial adenomatous polyposis. Cancer Epidemiol Biomarkers Prev 2002;11:535–540

    PubMed  CAS  Google Scholar 

  40. Sidhu GS, Mani H, Gaddipati JP, et al. Curcumin enhances wound healing in streptozotocin induced diabetic rats and genetically diabetic mice. Wound Repair Regen 1999;7:362–374

    Article  PubMed  CAS  Google Scholar 

  41. Chan MM, Huang HI, Fenton MR, Fong D. In vivo inhibition of nitric oxide synthase gene expression by curcumin, a cancer preventive natural product with anti-inflammatory properties. Biochem Pharmacol 1998;55:1955–1962

    Article  PubMed  CAS  Google Scholar 

  42. Parodi FE, Mao D, Ennis TL, Bartoli MA, Thompson RW. Suppression of experimental abdominal aortic aneurysms in mice by treatment with pyrrolidine dithiocarbamate, an antioxidant inhibitor of nuclear factor-kappaB. J Vasc Surg 2005;41:479–489

    Article  PubMed  Google Scholar 

  43. Lee JK, Borhani M, Ennis TL, Upchurch GRJ, Thompson RW. Experimental abdominal aortic aneurysms in mice lacking expression of inducible nitric oxide synthase. Arterioscler Thromb Vasc Biol 2001;21:1393–1401

    Article  PubMed  CAS  Google Scholar 

  44. Steinmetz EF, Buckley C, Shames ML, et al. Treatment with simvastatin suppresses the development of experimental abdominal aortic aneurysms in normal and hypercholesterolemic mice. Ann Surg 2005;241:92–101

    PubMed  Google Scholar 

  45. Buckley C, Wyble CW, Borhani M, et al. Accelerated enlargement of experimental abdominal aortic aneurysms in a mouse model of chronic cigarette smoke exposure. J Am Coll Surg 2004;199:896–903

    Article  PubMed  Google Scholar 

  46. Yajima N, Masuda M, Miyazaki M, Nakajima N, Chien S, Shyy JY. Oxidative stress is involved in the development of experimental abdominal aortic aneurysm: a study of the transcription profile with complementary DNA microarray. J Vasc Surg 2002;36:379–385

    Article  PubMed  Google Scholar 

  47. Dalman RL. Oxidative stress and abdominal aneurysms: how aortic hemodynamic conditions may influence AAA disease. Cardiovasc Surg 2003;11:417–419

    Article  PubMed  Google Scholar 

  48. Nakashima H, Aoki M, Miyake T, et al. Inhibition of experimental abdominal aortic aneurysm in the rat by use of decoy oligodeoxynucleotides suppressing activity of nuclear factor kappaB and ets transcription factors. Circulation 2004;109:132–138

    Article  PubMed  CAS  Google Scholar 

  49. Lawrence DM, Singh RS, Franklin DP, Carey DJ, Elmore JR. Rapamycin suppresses experimental aortic aneurysm growth. J Vasc Surg 2004;40:334–338

    Article  PubMed  Google Scholar 

  50. Kim JH, Shim JS, Lee SK, et al. Microarray-based analysis of anti-angiogenic activity of demethoxycurcumin on human umbilical vein endothelial cells: crucial involvement of the down-regulation of matrix metalloproteinase. Jpn J Cancer Res 2002;93:1378–1385

    PubMed  CAS  Google Scholar 

  51. Bond M, Fabunmi RP, Baker AH, Newby AC. Synergistic upregulation of metalloproteinase-9 by growth factors and inflammatory cytokines: an absolute requirement for transcription factor NF-kappaB. FEBS Lett 1998;435:29–34

    Article  PubMed  CAS  Google Scholar 

  52. Bond M, Chase AJ, Baker AH, Newby AC. Inhibition of transcription factor NF-kappaB reduces matrix metalloproteinase-1, -3 and -9 production by vascular smooth muscle cells. Cardiovasc Res 2001;50:556–565

    Article  PubMed  CAS  Google Scholar 

  53. Chase AJ, Bond M, Crook MF, Newby AC. Role of nuclear factor-kappa B activation in metalloproteinase-1, -3, and -9 secretion by human macrophages in vitro and rabbit foam cells produced in vivo. Arterioscler Thromb Vasc Biol 2002;22:765–771

    Article  PubMed  CAS  Google Scholar 

  54. Hussain S, Assender JW, Bond M, Wong LF, Murphy D, Newby AC. Activation of protein kinase Czeta is essential for cytokine-induced metalloproteinase-1, -3, and -9 secretion from rabbit smooth muscle cells and inhibits proliferation. J Biol Chem 2002;277:27345–27352

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgement

This work was supported by grants HL56701 and HL64333 from the National Heart, Lung, and Blood Institute (to R.W.T.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert W. Thompson MD.

About this article

Cite this article

Parodi, F.E., Mao, D., Ennis, T.L. et al. Oral Administration of Diferuloylmethane (Curcumin) Suppresses Proinflammatory Cytokines and Destructive Connective Tissue Remodeling in Experimental Abdominal Aortic Aneurysms. Ann Vasc Surg 20, 360–368 (2006). https://doi.org/10.1007/s10016-006-9054-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10016-006-9054-7

Keywords

Navigation