Skip to main content
Log in

Loss of H3K27me3 in WHO grade 3 meningioma

  • Original Article
  • Published:
Brain Tumor Pathology Aims and scope Submit manuscript

Abstract

Immunohistochemical quantification of H3K27me3 was reported to distinguish meningioma patients with an unfavorable prognosis but is not yet established as a prognostic biomarker within WHO grade 3 meningiomas. We studied H3K27me3 loss in a series of biopsies from primary and secondary malignant meningioma to validate its prognostic performance and describe if loss of H3K27me3 occurs during malignant transformation. Two observers quantified H3K27me3 status as “complete loss”, < 50% and > 50% stained cells in 110 tumor samples from a population-based consecutive cohort of 40 WHO grade 3 meningioma patients. We found no difference in overall survival (OS) in patients with > 50% H3K27me3 retention compared to < 50% in the cohort of patients with WHO grade 3 meningioma (Wald test p = 0.5). H3K27me3 staining showed heterogeneity in full section tumor slides while staining of the Barr body and peri-necrotic cells complicated quantification further. H3K27me3 expression differed without a discernible pattern between biopsies from repeated surgeries of meningioma recurrences. In conclusion, our results were not compatible with a systematic pattern of immunohistochemical H3K27me3 loss being associated with OS or malignant transformation of meningiomas and did not support H3K27me3 loss as a useful immunohistochemical biomarker within grade 3 meningiomas due to staining-specific challenges in quantification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability statement

The data presented in this study are available on request from the corresponding author.

References

  1. Ostrom QT, Gittleman H, Truitt G, Boscia A, Kruchko C, Barnholtz-Sloan JS (2018) CBTRUS statistical report: primary brain and other central nervous system tumors diagnosed in the United States in 2011–2015. Neuro Oncol. 20(suppl_4):iv1–iv86. https://doi.org/10.1093/neuonc/noy131

    Article  PubMed  PubMed Central  Google Scholar 

  2. Louis D, Ohgaki H, Wiestler O, Cavenee W (2016) WHO Classification of Tumours of the Central Nervous System. 4th editio. International Agency for Research on Cancer. World Health Organization

  3. WHO Classification of Tumours Editorial Board (2021) World Health Organization Classification of Tumours of the Central Nervous System. 5th ed.

  4. Louis DN, Perry A, Wesseling P et al (2021) The 2021 WHO classification of tumors of the central nervous system: a summary. Neuro Oncol 23(8):1231–1251. https://doi.org/10.1093/neuonc/noab106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Maier AD, Bartek J, Eriksson F et al (2019) Clinical and histopathological predictors of outcome in malignant meningioma. Neurosurg Rev. https://doi.org/10.1007/s10143-019-01093-5

    Article  PubMed  Google Scholar 

  6. Mirian C, Duun-Henriksen AK, Juratli T et al (2020) Poor prognosis associated with TERT gene alterations in meningioma is independent of the WHO classification: an individual patient data meta-analysis. J Neurol Neurosurg Psychiatry. https://doi.org/10.1136/jnnp-2019-322257

    Article  PubMed  Google Scholar 

  7. Sievers P, Hielscher T, Schrimpf D et al (2020) CDKN2A/B homozygous deletion is associated with early recurrence in meningiomas. Acta Neuropathol 140(3):409–413. https://doi.org/10.1007/s00401-020-02188-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Rogers L, Barani I, Chamberlain M et al (2015) Meningiomas: knowledge base, treatment outcomes, and uncertainties. a RANO review. J Neurosurg 122(1):4–23. https://doi.org/10.3171/2014.7.JNS131644

    Article  PubMed  PubMed Central  Google Scholar 

  9. Das P, Taube JH (2020) Regulating methylation at h3k27: a trick or treat for cancer cell plasticity. Cancers (Basel) 12(10):1–33. https://doi.org/10.3390/cancers12102792

    Article  CAS  Google Scholar 

  10. Filipski K, Braun Y, Zinke J et al (2019) Lack of H3K27 trimethylation is associated with 1p/19q codeletion in diffuse gliomas. Acta Neuropathol 138(2):331–334. https://doi.org/10.1007/s00401-019-02025-9

    Article  PubMed  PubMed Central  Google Scholar 

  11. Schaefer IM, Fletcher CDM, Hornick JL (2016) Loss of H3K27 trimethylation distinguishes malignant peripheral nerve sheath tumors from histologic mimics. Mod Pathol 29(1):4–13. https://doi.org/10.1038/modpathol.2015.134

    Article  CAS  PubMed  Google Scholar 

  12. Funato K, Major T, Lewis PW, Allis CD, Tabar V (2014) Use of human embryonic stem cells to model pediatric gliomas with H3.3K27M histone mutation. Science (80–) 346(6216):1529–1533. https://doi.org/10.1126/science.1253799

    Article  CAS  Google Scholar 

  13. Ehrlich M (2002) DNA methylation in cancer: too much, but also too little. Oncogene 21(35):5400–5413. https://doi.org/10.1038/sj.onc.1205651

    Article  CAS  PubMed  Google Scholar 

  14. Castel D, Philippe C, Calmon R et al (2015) Histone H3F3A and HIST1H3B K27M mutations define two subgroups of diffuse intrinsic pontine gliomas with different prognosis and phenotypes. Acta Neuropathol 130(6):815–827. https://doi.org/10.1007/s00401-015-1478-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Harutyunyan AS, Chen H, Lu T et al (2020) H3K27M in gliomas causes a one-step decrease in H3K27 methylation and reduced spreading within the constraints of H3K36 methylation. Cell Rep 33(7):108390. https://doi.org/10.1016/j.celrep.2020.108390

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Bracken AP (2003) EZH2 is downstream of the pRB-E2F pathway, essential for proliferation and amplified in cancer. EMBO J 22(20):5323–5335. https://doi.org/10.1093/emboj/cdg542

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Wei Y, Xia W, Zhang Z et al (2008) Loss of trimethylation at lysine 27 of histone H3 is a predictor of poor outcome in breast, ovarian, and pancreatic cancers. Mol Carcinog 47(9):701–706. https://doi.org/10.1002/mc.20413

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Röhrich M, Koelsche C, Schrimpf D et al (2016) Methylation-based classification of benign and malignant peripheral nerve sheath tumors. Acta Neuropathol 131(6):877–887. https://doi.org/10.1007/s00401-016-1540-6

    Article  CAS  PubMed  Google Scholar 

  19. Bayliss J, Mukherjee P, Lu C et al (2016) Lowered H3K27me3 and DNA hypomethylation define poorly prognostic pediatric posterior fossa ependymomas. Sci Transl Med. https://doi.org/10.1126/scitranslmed.aah6904

    Article  PubMed  PubMed Central  Google Scholar 

  20. Santagata S, Ligon KL (2021) Prognostication for meningiomas: H3K27me3 to the rescue? Neuro Oncol. https://doi.org/10.1093/neuonc/noab083

    Article  PubMed  PubMed Central  Google Scholar 

  21. Nassiri F, Wang JZ, Singh O et al (2021) Loss of H3K27me3 in meningiomas. Neuro Oncol. https://doi.org/10.1093/neuonc/noab036

    Article  PubMed  PubMed Central  Google Scholar 

  22. Katz LM, Hielscher T, Liechty B et al (2018) Loss of histone H3K27me3 identifies a subset of meningiomas with increased risk of recurrence. Acta Neuropathol. https://doi.org/10.1007/s00401-018-1844-9

    Article  PubMed  Google Scholar 

  23. Gauchotte G, Peyre M, Pouget C et al (2020) Prognostic value of histopathological features and loss of H3K27me3 immunolabeling in anaplastic meningioma: a multicenter retrospective study. J Neuropathol Exp Neurol 79(7):754–762. https://doi.org/10.1093/jnen/nlaa038

    Article  CAS  PubMed  Google Scholar 

  24. Behling F, Fodi C, Gepfner-Tuma I et al (2020) H3K27me3 loss indicates an increased risk of recurrence in the Tübingen meningioma cohort. Neuro Oncol 2020:1–9. https://doi.org/10.1093/neuonc/noaa303

    Article  Google Scholar 

  25. Jung M, Kim SI, Lim KY et al (2021) The substantial loss of H3K27me3 can stratify risk in grade 2, but not in grade 3 meningioma. Hum Pathol 115(800):96–103. https://doi.org/10.1016/j.humpath.2021.06.005

    Article  CAS  PubMed  Google Scholar 

  26. Katz LM, Hielscher T, Liechty B et al (2018) Loss of histone H3K27me3 identifies a subset of meningiomas with increased risk of recurrence. Acta Neuropathol 135(6):955–963. https://doi.org/10.1007/s00401-018-1844-9

    Article  CAS  PubMed  Google Scholar 

  27. Ammendola S, Barresi V (2022) Timing of H3K27me3 loss in secondary anaplastic meningiomas. Brain Tumor Pathol 3(0123456789):21–23. https://doi.org/10.1007/s10014-021-00422-1

    Article  CAS  Google Scholar 

  28. Maier AD, Stenman A, Svahn F et al (2021) TERT promoter mutations in primary and secondary WHO grade III meningioma. Brain Pathol 31(1):61–69. https://doi.org/10.1111/bpa.12892

    Article  CAS  PubMed  Google Scholar 

  29. R Core Team. R: A language and environment for statistical computing. R Found Stat Comput. Published online 2020. https://www.r-project.org/

  30. Schaefer IM, Minkovsky A, Hornick JL (2016) H3K27me3 immunohistochemistry highlights the inactivated X chromosome (Xi) and predicts sex in non-neoplastic tissues. Histopathology 69(4):702–704. https://doi.org/10.1111/his.12972

    Article  PubMed  Google Scholar 

  31. Batie M, Frost J, Frost M, Wilson JW, Schofield P, Rocha S (2019) Hypoxia induces rapid changes to histone methylation and reprograms chromatin. Science (80–) 363(6432):1222–1226. https://doi.org/10.1126/science.aau5870

    Article  CAS  Google Scholar 

  32. Lewis PW, Müller MM, Koletsky MS et al (2011) Inhibition of PRC2 activity by a gain-of-function h3 mutation found in pedriatic glioblastoma. Science (80–) 23(1):1–7. https://doi.org/10.1126/science.1232245.Inhibition

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank the Biomedical Laboratory Scientists at the Pathology Department, Rigshospitalet, for their technical expertise and support.

Funding

This research was funded by the Danish Cancer Society, Grant number A16459 and the Lundbeck Foundation.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, ADM, TM, DS and CBB; methodology, ADM, CBB, DS, CM.; software, ADM.; validation, CBB, ADM and DS; formal analysis, ADM and CM.; investigation, ADM and CBB; resources, ADM and DS; data curation, ADM; writing—original draft preparation, ADM, TM, JB, JHV, CM, CBB, TJE, FP and DS; writing—review and editing, ADM, TM, JB, JHV, CM, CBB, DS, TJE, TM, FP and DS; visualization, ADM, CBB.; supervision, TM, DS, FP, TJE; project ad-ministration, ADM; funding acquisition, ADM. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Andrea Daniela Maier.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Institutional review board statement

The study was conducted according to the guidelines of the Declaration of Helsinki and approved by the Danish Ethics Committee (number H-6–2014-010).

Informed consent statement

Patient consent was waived since the study does not involve any further health risks or cause the patients any further harm and obtaining informed consent was estimated as disproportionately difficult.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maier, A.D., Brøchner, C.B., Mirian, C. et al. Loss of H3K27me3 in WHO grade 3 meningioma. Brain Tumor Pathol 39, 200–209 (2022). https://doi.org/10.1007/s10014-022-00436-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10014-022-00436-3

Keywords

Navigation