Skip to main content
Log in

Convexity and Closure in Optimal Allocations Determined by Decomposable Measures

  • Published:
Vietnam Journal of Mathematics Aims and scope Submit manuscript

Abstract

A general optimal allocation problem is considered, where the decision-maker controls the distribution of acting agents, by choosing a probability measure on the space of agents. The notion of a decomposable family of probability measures is introduced, in the spirit of a decomposable family of functions. It provides a sufficient condition for the convexity of the feasible set, and the concavity of the value function. Together with additional conditions, closure properties also follow. The notion of a decomposable family of measures covers, both the case of set-valued integrals and the case of convexity in the space of probability measures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Antosiewicz, H.A., Cellina, A.: Continuous selections and differential relations. J. Differ. Equ. 19, 386–398 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  2. Artstein, Z.: On a variational problem. J. Math. Anal. Appl. 45, 404–415 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  3. Artstein, Z.: A variational problem determined by probability measures. Optimization 68, 81–98 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  4. Aumann, R.J.: Integrals of set-valued functions. J. Math. Anal. Appl. 12, 1–12 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  5. Aumann, R.J., Perles, M.A.: A variational problem arising in economics. J. Math. Anal. Appl. 11, 488–503 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  6. Balder, E.J.: New existence results for optimal controls in the absence of convexity: the importance of extremality. SIAM J. Control Optim. 32, 890–916 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  7. Balder, E.J.: Lectures on Young measure theory and its applications to economics. In: Rend. Istit. Mat. Univ. Trieste. Int. J. Math. 31, supplemento 1, pp. 1–69 (2000)

  8. Balder, E.J., Pistorius, M.R.: On an optimal consumption problem for p-integrable consumption plans. Econ. Theory 17, 721–737 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  9. Berliocchi, H., Lasry, J.-M.: Intégrandes normales et mesures paramétrées en calcul des variations. Bull. Soc. Fr. 101, 129–184 (1973)

    MATH  Google Scholar 

  10. Billingsley, P.: Convergence of Probability Measures, 2nd edn. Wiley, Newyork (1999)

  11. Flores-Bazán, F.: Optimal solutions in an allocation process for a continuum of traders. J. Glob. Optim. 16, 153–165 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  12. Flores-Bazán, F., Jourani, A., Mastroeni, G.: On the convexity of the value function for a class of nonconvex variational problems: existence and optimality conditions. SIAM J. Control Optim. 52, 3673–3693 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  13. Flores-Bazán, F., Raymond, J.-P.: A variational problem related to a continuous-time allocation process for a continuum of traders. J. Math. Anal. Appl. 261, 448–460 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  14. Fryszkowski, A.: Fixed Point Theory for Decomposable Sets. Kluwer Academic Publishers, Dordrecht (2004)

    Book  MATH  Google Scholar 

  15. González-Hernández, J., Hernández-Lerma, O.: Extreme points of sets of randomized strategies in constrained optimization and control problems. SIAM J. Optim. 15, 1085–1104 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  16. Halkin, H.: Some further generalizations of a theorem of Lyapunov. Arch. Rational Mech. Anal. 17, 272–277 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  17. Ioffe, A.: Variational problem associated with a model of welfare economics with a measure space of agents. In: Kusuoka, S., Yamazaki, A (eds.) Advances in Mathematical Economics, vol. 8, pp. 297–314. Springer, Tokyo (2006)

  18. Ioffe, A.: An invitation to tame optimization. SIAM J. Optim. 19, 1894–1917 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  19. loffe, A.D., Tikhomirov, V.M.: On minimization of integral functionals. Funct. Anal. Appl. 3, 218–227 (1969)

    Article  MathSciNet  Google Scholar 

  20. Khan, M.A., Sagara, N.: The bang-bang, purification and convexity principles in infinite dimensions. Set-Valued Var. Anal. 22, 721–746 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  21. Maruyama, T.: An extension of the Aumann–Perles’ variational problem. Proc. Jpn. Acad. Ser. A Math. Sci. 55, 348–352 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  22. Maruyama, T.: Continuity theorem for non-linear integral functionals and Aumann–Perles’ variational problem. Proc. Jpn. Acad. Ser. A Math. Sci. 62, 163–165 (1986)

    Article  MATH  Google Scholar 

  23. Olech, C.: Decomposability as a substitute for convexity. In: Salinetti, G (ed.) Multifunctions and Integrands (Catania, 1983). Lecture Notes in Mathematics, vol. 1091, pp. 193–205. Springer, Berlin (1984)

  24. Olech, C.: The Lyapunov Theorem: its extensions and applications. In: Ekeland, I. et al. (eds.) Methods of Nonconvex Analysis. Lecture Notes in Mathematics, vol. 1446, pp. 84–103. Springer, Berlin (1990)

  25. Rockafellar, R.T.: Integrals which are convex functionals. Pac. J. Math. 24, 525–539 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  26. Sagara, N.: An indirect method of nonconvex variational problems in Asplund spaces: the case for saturated measure spaces. SIAM J. Control Optim. 53, 336–351 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  27. Valadier, M.: A course on Young measures. Rend. Istit. Mat. Univ. Trieste 26, 349–394 (1994)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zvi Artstein.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The paper is dedicate to Alex Ioffe.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Artstein, Z. Convexity and Closure in Optimal Allocations Determined by Decomposable Measures. Vietnam J. Math. 47, 563–577 (2019). https://doi.org/10.1007/s10013-019-00344-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10013-019-00344-8

Keywords

Mathematics Subject Classification (2010)

Navigation