Skip to main content
Log in

A Survey About the Equation div u=f in Bounded Domains of \(\mathbb{R}^{n}\)

  • Published:
Vietnam Journal of Mathematics Aims and scope Submit manuscript

Abstract

Let \(\varOmega\subset \mathbb {R}^{n}\) be a bounded domain. We review some results about the solution of the equation \(\mathop {\rm div}u=f\), in various functional spaces and under different geometric assumptions on Ω.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Acosta, G., Durán, R.G., Muschietti, M.A.: Solutions of the divergence operator on John domains. Adv. Math. 206, 373–401 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  2. Adams, R.A., Fourrier: Sobolev Spaces. Pure and Applied Mathematics, vol. 140. Elsevier/Academic Press, Amsterdam (2003)

    MATH  Google Scholar 

  3. Arnold, D.N., Scott, L.R., Vogelius, M.: Regular inversion of the divergence operator with Dirichlet boundary conditions on a polygon. Ann. Sc. Norm. Super. Pisa, Cl. Sci. 15, 169–192 (1988)

    MATH  MathSciNet  Google Scholar 

  4. Auscher, P., Russ, E.: Hardy spaces and divergence operators on strongly Lipschitz domains of \(\mathbb {R}^{n}\) (2001). arXiv:math/0201301v1

  5. Auscher, P., Russ, E., Tchamitchian, P.: Hardy Sobolev spaces on strongly Lipschitz domains of \(\mathbb {R}^{n}\). J. Funct. Anal. 218, 54–109 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  6. Boas, H.P., Straube, E.J.: Integral inequalities of Hardy and Poincaré type in L 1. Proc. Am. Math. Soc. 103, 172–176 (1988)

    MATH  MathSciNet  Google Scholar 

  7. Bogovskii, M.E.: Solution of the first boundary value problem for the equation of continuity of an incompressible medium. Sov. Math. Dokl. 20, 1094–1098 (1979)

    Google Scholar 

  8. Bourgain, J., Brezis, H.: On the equation \(\mathop {\rm div}Y = f\) and application to control of phases. J. Am. Math. Soc. 16, 393–426 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  9. Bourgain, J., Brezis, H., Mironescu, P.: Lifting in Sobolev spaces. J. Anal. Math. 80, 37–86 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  10. Bourgain, J., Brezis, H., Mironescu, P.: On the structure of the Sobolev space H 1/2 with values into the circle. C. R. Math. Acad. Sci. Paris 331, 119–124 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  11. Bousquet, P., Mironescu, P., Russ, E.: A limiting case for the divergence equation. Math. Z. 274(1–2), 427–460 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  12. Brenner, S.C., Scott, L.R.: The Mathematical Theory of Finite Element Methods. Springer, Berlin (2002)

    Book  MATH  Google Scholar 

  13. Brezis, H.: Functional Analysis, Sobolev Spaces and Partial Differential Equations. Springer, Berlin (2011)

    MATH  Google Scholar 

  14. Buckley, S.M., Koskela, P.: Sobolev-Poincaré implies John. Math. Res. Lett. 2, 577–594 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  15. Costabel, M., McIntosh, A.: On Bogovskiĭ and regularized Poincaré integral operators for de Rham complexes on Lipschitz domains. Math. Z. 265, 297–320 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  16. Costabel, M., McIntosh, A., Taggart, R.J.: Potential maps and hardy spaces on special Lipschitz domains. arXiv preprint arXiv:1006.0562 (2010)

  17. Dacorogna, B., Fusco, N., Tartar, L.: On the solvability of the equation \(\mathop {\rm div}u = f\) in l 1 and c 0. Atti Accad. Naz. Lincei, Rend. Lincei, Mat. Appl. 9, 239–245 (2003)

    MathSciNet  Google Scholar 

  18. Drelichman, I., Durán, R.G.: Improved Poincaré inequalities with weights. J. Math. Anal. Appl. 347, 286–293 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  19. Durán, R., Garcia, F.L.: Solutions of the divergence and analysis of the Stokes equations in planar Hölder-α domains. Math. Models Methods Appl. Sci. 20(1), 95–120 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  20. Durán, R.G., Muschietti, M.A.: An explicit right inverse of the divergence operator which is continuous in weighted norms. Stud. Math. 48, 207–219 (2001)

    Article  Google Scholar 

  21. Durán, R.G., Muschietti, M.A., Russ, E., Tchamitchian, P.: Divergence operator and Poincaré inequalities on arbitrary bounded domains. A paraître dans. Complex. Var. Elliptic Equ. (2009)

  22. Evans, L.C.: Partial Differential Equations. Graduate Text in Mathematics, vol. 119. Amer. Math. Soc., Providence (1998)

    MATH  Google Scholar 

  23. Friedrichs, K.: On certain inequalities and characteristic value problems for analytic functions and for functions of two variables. Trans. Am. Math. Soc. 41, 321–364 (1937)

    Article  MathSciNet  Google Scholar 

  24. Geißert, M., Heck, H., Hieber, M.: On the equation \(\mathop {\rm div}u = g\) and Bogovskiĭ’s operator in Sobolev spaces of negative order. In: Partial Differential Equations and Functional Analysis. Oper. Theory Adv. Appl., vol. 168, pp. 113–121. Birkhäuser, Basel (2006)

    Chapter  Google Scholar 

  25. Geymonat, G., Gilardi, G.: Contre-exemples à l’inégalité de Korn et au lemme de Lions dans des domaines irréguliers. In: Equations aux Dérivées Partielles et Applications, pp. 541–548. Gauthiers-Villars, Paris (1998)

    Google Scholar 

  26. Gilbarg, D., Trudinger, N.S.: Elliptic Partial Differential Equations of Second Order. Springer, Berlin (2001)

    MATH  Google Scholar 

  27. Girault, V., Raviart, P.: Finite element methods for Navier–Stokes equations: theory and algorithms In: Springer Series in Computational Mathematics, vol. 5. Springer, Berlin and New York (1986)

    Google Scholar 

  28. Hajlasz, P., Koskela, P.: Isoperimetric inequalities and imbedding theorems in irregular domains. J. Lond. Math. Soc. (2) 58, 425–450 (1998)

    Article  MathSciNet  Google Scholar 

  29. Mitrea, D., Mitrea, M., Monniaux, S.: The Poisson problem for the exterior derivative operator with Dirichlet boundary condition in nonsmooth domains. Commun. Pure Appl. Anal. 7, 1295–1333 (2008)

    Article  MathSciNet  Google Scholar 

  30. Nečas, J.: Les Méthodes Directes en Théorie des Équations Elliptiques. Masson et Cie, Èditeurs, Academia, Paris, Prague (1967)

    MATH  Google Scholar 

  31. Ornstein, D.: A non-inequality for differential operators in the L 1 norm. Arch. Ration. Mech. Anal. 11, 40–49 (1962)

    Article  MATH  MathSciNet  Google Scholar 

  32. Tadmor, E.: Hierarchical solutions for linear equations: a constructive proof of the closed range theorem. arXiv preprint arXiv:1003.1525 (2010)

  33. Tadmor, E., Tan, C.: Hierarchical construction of bounded solutions of \(\mathop {\rm div}u= f\) in critical regularity spaces. Nonlinear Partial Diff. Equ., 255–269 (2012)

  34. Weck, N.: Local compactness for linear elasticity in irregular domains. Math. Methods Appl. Sci. 17, 107–113 (1994)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgements

The author would like to thank the referee for helpful remarks.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emmanuel Russ.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Russ, E. A Survey About the Equation div u=f in Bounded Domains of \(\mathbb{R}^{n}\) . Viet J Math 41, 369–381 (2013). https://doi.org/10.1007/s10013-013-0034-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10013-013-0034-2

Keywords

Mathematics Subject Classification (2010)

Navigation