Skip to main content
Log in

Mathematical modelling of transient processes in convective heated surfaces of boilers

Modellierung von instationären Prozessen an konvektiven Kesselheizflächen

  • Originalarbeiten/Originals
  • Published:
Forschung im Ingenieurwesen Aims and scope Submit manuscript

Abstract

The paper presents a one-dimensional mathematical model for simulating the transient processes which occur in convective heated surfaces of boilers, namely superheaters and economizers. The proposed model is based on solving equation describing the energy conservation and is simplified because the mass and momentum balance equations are omitted. The suggested method considers the superheater or economizer model as one with distributed parameters. The temperature of the separating wall is determined from the equation of transient heat conduction. In order to obtain a grater accuracy of the results, the wall was divided into two control volumes making it possible to compute the temperatures on its both surfaces. All thermo-physical properties of the operating media and the material of the separating walls are computed in real time. The space-time heat transfer coefficients are also computed on-line considering the actual tube pitches and assuming cross-flow of the combustion gases. In the proposed model the boundary conditions can be time-dependent. In order to experimentally verify the proposed method for modelling the processes occurring in convective surfaces of power boilers, a series of measurements of the platen superheater and economizer in an OP-210 boiler (with steam capacity of 210×103 kg/h) were carried out. Comparing the results of measurements of the steam and feed water temperature with computation results, satisfactory convergence is found.

Zusammenfassung

In diesem Artikel ist ein mathematisches Modell vorgestellt, das die Simulierung von an konvektiven Heizflächen von Kesseln (in Dampfüberhitzern und Speisewasservorwärmern) ablaufenden transienten Prozessen ermöglicht. Es ist ein eindimensionales Modell mit verteilten Parametern, gestützt allein auf der Energiebilanzgleichung. Unbetrachtet blieben die den Energieerhaltungssatz und den Impulssatz beschreibenden Gleichungen. An der Wandseite wurde die Gleichung der instationären Wärmeleitung aufgelöst. Zwecks größerer Berechnungsgenauigkeit wurde diese Wand in zwei Kontrollvolumina geteilt, was die Berechnung der Temperatur an deren beiden Oberflächen ermöglicht. Alle thermophysikalischen Eigenschaften der Flüssigkeiten und des Wandmaterials waren laufend berechnet. Laufend waren auch die zeitlich-räumlichen Verteilungen der Wärmeübergangszahlen berechnet, mit Berücksichtigung der tatsächlichen Rohrteilungen und Querströmungsannahme des Verbrennungsgases. Das vorgeschlagene Modell zeichnet sich außerdem dadurch aus, dass die Randbedingungen zeitabhängig sein können. Zur experimentellen Verifizierung der vorgeschlagenen Methode von an den konvektiven Heizflächen von Kraftwerkskesseln verlaufenden Wärme- und Durchflussprozessen wurden mehrere Messungen an einem Schottenüberhitzer und einem Speisewasservorwärmer des Kessels OP-210 (mit einer Dampfleistung von 210×103 kg/h) durchgeführt. Aus einem Vergleichen der gemessenen und berechneten Verläufe der Dampf- und der Speisewassertemperatur folgt eine vollkommen zufriedenstellende Genauigkeit der mittels der vorgeschlagenen Methode erzielten Ergebnisse.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Krzyżanowski JA, Głuch J (2004) Heat-Flow Diagnostics of the Energetic Objects (in Polish). Institute of Fluid-Flow Machinery, Polish Academy of Sciences, Gdansk

  2. Enns M (1962) Comparison of Dynamic Models of a Superheater. J Heat Transf 4:375–385

    Google Scholar 

  3. Strzelczyk F (1976) A digital non-linear mathematical model of the steam superheater (in Polish). Scientific Journal of Technical University of Lodz 53:17–28, Lodz

    Google Scholar 

  4. Strzelczyk F (1981) A general mathematical model of the steam superheater (in Polish). Archives of Energetics 1, Polish Academy of Sciences, Gdansk, 55–75

  5. Lu S (1999) Dynamic modelling and simulation of power plant systems. Proc IME Part A: J Power Energy 213:7–22

  6. Chakraborty N, Chakraborty S (2002) A generalized object-oriented computational method for simulation of power and process cycles. Proc IME Part A: J Power Energy 216:155–159

    Google Scholar 

  7. Mohan M, Gandhi OP, Agrawal VP (2003) Systems modelling of a coal-based steam power plant. Proc IME Part A: J Power Energy 217:259–277

    Google Scholar 

  8. Shirakawa M (2006) Development of a thermal power plant simulation tool based on object orientation. Proc IME Part A: J Power Energy 220:569–579

    Google Scholar 

  9. Bojić M, Dragićević S (2006) Optimization of a steam boiler design. Proc IME Part A: J Power Energy 220:629–634

  10. Dechamps PJ (1995) Modelling the transient behaviour of heat recovery steam generators. J Power Energy 209:265–273

    Google Scholar 

  11. Hausen H (1976) Wärmeübertragung im Gegenstrom, Gleichstrom und Kreuzstrom. 2. Aufl. Springer, Berlin

    Google Scholar 

  12. Zima W (2001) Numerical modelling of dynamics of steam superheaters. Energy 26(12):1175–1184

    Article  Google Scholar 

  13. Zima W (2004) Simulation of transient processes in boiler steam superheaters (in Polish). Monograph 311. Cracow University of Technology, Cracow

  14. Zima W (2003) Mathematical model of transient processes in steam superheaters. Forsch Ingenieurwes 68:51–59

    Article  Google Scholar 

  15. Zima W (2006) Simulation of dynamics of a boiler steam superheater with an attemperator. Proc IME Part A: J Power Energy 220:793–801

    Google Scholar 

  16. Walter H, Ponweiser K (2006) Temperature distribution in membrane walls. 10th International Conference on Boiler Technology 2006, Vol. 4. Szczyrk, Poland, pp 203–214

  17. Zima W (1999) Modelling of the dynamics of the convective heating surfaces of boilers. Arch Thermodyn 20(1–2):71–92

    Google Scholar 

  18. Gerald CF, Wheatley PO (1984) Applied Numerical Analysis. Addison – Wesley Publishing Company, California

    MATH  Google Scholar 

  19. Kuznetsov NW, Mitor WW, Dubovski IE, Karasina ES (1973) Teplovoi raschet kotelnyh agregatov. Energia, Moskva

    Google Scholar 

  20. Cwynar L (1981) The Start-up of Power Boilers (in Polish). WNT, Warsaw

    Google Scholar 

  21. Taler J, Duda P (2006) Solving Direct and Inverse Heat Conduction Problems. Springer, Berlin

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. Zima.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zima, W. Mathematical modelling of transient processes in convective heated surfaces of boilers . Forsch Ingenieurwes 71, 113–123 (2007). https://doi.org/10.1007/s10010-007-0050-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10010-007-0050-z

Keywords

Navigation